
A Simple, Verified Validator for Software Pipelining
(verification pearl)

Jean-Baptiste Tristan
INRIA Paris-Rocquencourt

B.P. 105, 78153 Le Chesnay, France
jean-baptiste.tristan@inria.fr

Xavier Leroy
INRIA Paris-Rocquencourt

B.P. 105, 78153 Le Chesnay, France
xavier.leroy@inria.fr

Abstract
Software pipelining is a loop optimization that overlaps the execu-
tion of several iterations of a loop to expose more instruction-level
parallelism. It can result in first-class performance characteristics,
but at the cost of significant obfuscation of the code, making this
optimization difficult to test and debug. In this paper, we present a
translation validation algorithm that uses symbolic evaluation to de-
tect semantics discrepancies between a loop and its pipelined ver-
sion. Our algorithm can be implemented simply and efficiently, is
provably sound, and appears to be complete with respect to most
modulo scheduling algorithms. A conclusion of this case study is
that it is possible and effective to use symbolic evaluation to reason
about loop transformations.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification - Correctness proofs; D.3.4
[Programming Languages]: Processors - Optimization

General Terms Languages, Verification, Algorithms

Keywords Software pipelining, translation validation, symbolic
evaluation, verified compilers

1. Introduction
There is one last technique in the arsenal of the software
optimizer that may be used to make most machines run at
tip top speed. It can also lead to severe code bloat and may
make for almost unreadable code, so should be considered
the last refuge of the truly desperate. However, its perfor-
mance characteristics are in many cases unmatched by any
other approach, so we cover it here. It is called software
pipelining [. . .]

Apple Developer Connection1

Software pipelining is an advanced instruction scheduling opti-
mization that exposes considerable instruction-level parallelism by
overlapping the execution of several iterations of a loop. It pro-
duces smaller code and eliminates more pipeline stalls than merely

1 http://developer.apple.com/hardwaredrivers/ve/
software pipelining.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

unrolling the loop then performing acyclic scheduling. Software
pipelining is implemented in many production compilers and de-
scribed in several compiler textbooks [1, section 10.5] [2, chapter
20] [16, section 17.4]. In the words of the rather dramatic quote
above, “truly desperate” programmers occasionally perform soft-
ware pipelining by hand, especially on multimedia and signal pro-
cessing kernels.

Starting in the 1980’s, many clever algorithms were designed
to produce efficient software pipelines and implement them either
on stock hardware or by taking advantage of special features such
as those of the IA64 architecture. In this paper, we are not con-
cerned about the performance characteristics of these algorithms,
but rather about their semantic correctness: does the generated,
software-pipelined code compute the same results as the original
code? As with all advanced compiler optimizations, and perhaps
even more so here, mistakes happen in the design and implementa-
tion of software pipelining algorithms, causing incorrect code to be
generated from correct source programs. The extensive code rear-
rangement performed by software pipelining makes visual inspec-
tion of the generated code ineffective; the additional boundary con-
ditions introduced make exhaustive testing difficult. For instance,
after describing a particularly thorny issue, Rau et al. [23] note that

The authors are indirectly aware of at least one computer
manufacturer whose attempts to implement modulo schedul-
ing, without having understood this issue, resulted in a com-
piler which generated incorrect code.

Translation validation is a systematic technique to detect (at
compile-time) semantic discrepancies introduced by buggy com-
piler passes or desperate programmers who optimize by hand, and
to build confidence in the result of a compilation run or manual
optimization session. In this approach, the programs before and
after optimization are fed to a validator (a piece of software dis-
tinct from the optimizer), which tries to establish that the two pro-
grams are semantically equivalent; if it fails, compilation is aborted
or continues with the unoptimized code, discarding the incorrect
optimization. As invented by Pnueli et al. [20], translation valida-
tion proceeds by generation of verification conditions followed by
model-checking or automated theorem proving [19, 29, 28, 3, 8].
An alternate approach, less general but less costly in validation
time, relies on combinations of symbolic evaluation and static anal-
ysis [18, 24, 6, 26, 27]. The VCGen/theorem-proving approach was
applied to software pipelining by Leviathan and Pnueli [14]. It was
long believed that symbolic evaluation with static analyses was too
weak to validate aggressive loop optimizations such as software
pipelining.

In this paper, we present a novel translation validation algo-
rithm for software pipelining, based on symbolic evaluation. This
algorithm is surprisingly simple, proved to be sound (most of the

Original loop body B:

x := load(float64, p);
y := x * c;
store(float64, p, y);
p := p + 8;
i := i + 1;

Prolog P:

p1 := p;
p2 := p;
x1 := x;
x2 := x;
x1 := load(float64, p1);
p2 := p1 + 8;
x2 := load(float64, p2);
y := x1 * c;
i := i + 2;

Steady state S:

store(float64, p1, y);
p1 := p2 + 8;
y := x2 * c;
x1 := load(float64, p1);
store(float64, p2, y);
p2 := p1 + 8;
y := x1 * c;
x2 := load(float64, p2);
i := i + 2;

Epilogue E :

store(float64, p1, y);
y := x2 * c;
store(float64, p2, y);
x := x2;
p := p2;

Figure 1. An example of software pipelining

proof was mechanized using the Coq proof assistant), and infor-
mally argued to be complete with respect to a wide class of soft-
ware pipelining optimizations.

The formal verification of a validator consists in mechanically
proving that if it returns true, its two input programs do behave
identically at run time. This is a worthwhile endeavor for two rea-
sons. First, it brings additional confidence that the results of vali-
dation are trustworthy. Second, it provides an attractive alternative
to formally verifying the soundness of the optimization algorithm
itself: the validator is often smaller and easier to verify than the op-
timization it validates [26]. The validation algorithm presented in
this paper grew out of the desire to add a software pipelining pass
to the CompCert high-assurance C compiler [11]. Its formal veri-
fication in Coq is not entirely complete at the time of this writing,
but appears within reach given the simplicity of the algorithm.

The remainder of this paper is organized as follows. Section 2
recalls the effect of software pipelining on the shape of loops. Sec-
tion 3 outlines the basic principle of our validator. Section 4 defines
the flavor of symbolic evaluation that it uses. Section 5 presents the
validation algorithm. Its soundness is proved in section 6; its com-
pleteness is discussed in section 7. The experience gained on a pro-
totype implementation is discussed in section 8. Section 9 discusses
related work, and is followed by conclusions and perspectives in
section 10.

2. Software pipelining
From the bird’s eye, software pipelining is performed in three steps.

Step 1 Select one inner loop for pipelining. Like in most previous
work, we restrict ourselves to simple counted loops of the form

i := 0;
while (i < N) { B }

We assume that the loop bound N is a loop-invariant variable,
that the loop body B is a basic block (no conditional branches, no
function calls), and that the loop index i is incremented exactly
once in B. The use of structured control above is a notational
convenience: in reality, software pipelining is performed on a flow
graph representation of control (CFG), and step 1 actually isolates a
sub-graph of the CFG comprising a proper loop of the form above,
as depicted in figure 2(a).

Step 2 Next, the software pipeliner is called. It takes as in-
put the loop body B and the loop index i, and produces a
5-tuple (P,S, E , µ, δ) as result. P , S and E are sequences of
non-branching instructions; µ and δ are positive integers.

• S is the new loop body, also called the steady state of the
pipeline.

• P is the loop prolog: a sequence of instructions that fills the
pipeline until it reaches the steady state.

• E is the loop epilog: a sequence of instructions that drains the
pipeline, finishing the computations that are still in progress at
the end of the steady state.

• µ is the minimum number of iterations that must be performed
to be able to use the pipelined loop.

• δ is the amount of unrolling that has been performed on the
steady state. In other words, one iteration of S corresponds to δ
iterations of the original loop B.

The prolog P is assumed to increment the loop index i by µ; the
steady state S, by δ; and the epilogue E , not at all.

The software pipelining algorithms that we have in mind here
are combinations of modulo scheduling [22, 7, 15, 23, 4] fol-
lowed by modulo variable expansion [10]. However, the presenta-
tion above seems general enough to accommodate other scheduling
algorithms.

Figure 1 illustrates one run of a software pipeliner. The schedule
obtained by modulo scheduling performs, at each iteration, the ith

store and increment of p, the (i+1)th multiplication by c, and the
(i+ 2)th load. To avoid read-after-write hazards, modulo variable
expansion was performed, unrolling the schedule by a factor of 2,
and replacing variables p and x by two variables each, p1/p2 and
x1/x2, which are defined in an alternating manner. These pairs of
variables are initialized from p and x in the prolog; the epilogue
sets p and x back to their final values. The unrolling factor δ is
therefore 2. Likewise, the minimum number of iterations is µ = 2.

Step 3 Finally, the original loop is replaced by the following
pseudo-code:

i := 0;
if (N ≥ µ) {
M := ((N − µ)/δ)× δ + µ;
P
while (i < M) { S }
E

}
while (i < N) { B }

In CFG terms, this amounts to replacing the sub-graph shown at the
top of figure 2 by the one shown at the bottom.

The effect of the code after pipelining is as follows. If the
number of iterations N is less than µ, a copy of the original loop
is executed. Otherwise, we execute the prolog P , then iterate the
steady state S, then execute the epilogue E , and finally fall through
the copy of the original loop. Since P and S morally correspond to
µ and δ iterations of the original loop, respectively, S is iterated n
times where n is the largest integer such that µ+ nδ ≤ N , namely
n = (N − µ)/δ. In terms of the loop index i, this corresponds to
the upper limit M shown in the pseudo-code above. The copy of
the original loop executes the remaining N −M iterations.

i := 0

if(i < N)

B

in:

out

x:

(a) Original sub-CFG

i := 0

if(N ≥ µ)

M := N − µ
M := M / δ
M := M × δ
M := M + µ

P

if(i < M)

SE

if(i < N)

B

in:

out

b:

c:

d:

f:e:

g:

h:

(b) Replacement sub-CFG after software pipelining

Figure 2. The effect of software pipelining on a control-flow graph

Steps 1, 2 and 3 can of course be repeated once per inner loop
eligible for pipelining. In the remainder of this paper, we focus on
the transformation of a single loop.

3. Validation a posteriori
In a pure translation validation approach, the validator would re-
ceive as inputs the code before and after software pipelining and
would be responsible for establishing the correctness of all three
steps of pipelining. We found it easier to concentrate translation
validation on step 2 only (the construction of the components of
the pipelined loop) and revert to traditional compiler verification
for steps 1 and 3 (the assembling of these components to form the
transformed code). In other words, the validator we set out to build

takes as arguments the input (i,N,B) and output (P,S, E , µ, δ)
of the software pipeliner (step 2). It is responsible for establishing
conditions sufficient to prove semantic preservation between the
original and transformed codes (top and bottom parts of figure 2).

What are these sufficient conditions and how can a validator
establish them? To progress towards an answer, think of complete
unrollings of the original and pipelined loops. We see that the run-
time behavior of the original loop is equivalent to that of BN , that
is, N copies of B executed in sequence. Likewise, the generated
code behaves either like BN if N < µ, or like

P;Sκ(N); E ;Bρ(N)

if N ≥ µ, where

κ(N)
def
= (N − µ)/δ

ρ(N)
def
= N − µ− δ × κ(N)

The verification problem therefore reduces to establishing that, for
all N , the two basic blocks

XN
def
= BN and YN

def
= P;Sκ(N); E ;Bρ(N)

are semantically equivalent: if both blocks are executed from the
same initial state (same memory state, same values for variables),
they terminate with the same final state (up to the values of tempo-
rary variables introduced during scheduling and unused later).

For a given value of N , symbolic evaluation provides a simple,
effective way to ensure this semantic equivalence between XN
and YN . In a nutshell, symbolic evaluation is a form of denotational
semantics for basic blocks where the values of variables x, y, . . .
at the end of the block are determined as symbolic expressions of
their values x0, y0, . . . at the beginning of the block. For example,
the symbolic evaluation of the blockB def

= y := x+1; x := y×2
is

α(B) =

8<: x 7→ (x0 + 1)× 2
y 7→ x0 + 1
v 7→ v0 for all v /∈ {x, y}

(This is a simplified presentation of symbolic evaluation; section 4
explains how to extend it to handle memory accesses, potential run-
time errors, and the fresh variables introduced by modulo variable
expansion during pipelining.)

The fundamental property of symbolic evaluation is that if two
blocks have identical symbolic evaluations, whenever they are ex-
ecuted in the same but arbitrary initial state, they terminate in the
same final state. Moreover, symbolic evaluation is insensitive to
reordering of independent instructions, making it highly suitable
to reason over scheduling optimizations [26]. Therefore, for any
given N , our validator can check that α(XN) = α(YN); this suf-
fices to guarantee that XN and YN are semantically equivalent.

If N were a compile-time constant, this would provide us with
a validation algorithm. However, N is in general a run-time quan-
tity, and statically checking α(XN) = α(YN) for all N is not
decidable. The key discovery of this paper is that this undecidable
property ∀N, α(XN) = α(YN) is implied by (and, in practice,
equivalent to) the following two decidable conditions:

α(E ;Bδ) = α(S; E) (1)
α(Bµ) = α(P; E) (2)

The programmer’s intuition behind condition 1 is the following:
in a correct software pipeline, if enough iterations remain to be
performed, it should always be possible to choose between 1)
execute the steady state S one more time, then leave the pipelined
loop and execute E ; or 2) leave the pipelined loop immediately
by executing E , then run δ iterations of the original loop body B.
(See figure 3.) Condition 2 is even easier to justify: if the number

Bµ Bδ Bδ Bρ(N)

P S S

EEE

Figure 3. A view of an execution of the loop, before (top) and after
(bottom) pipelining. The dashed vertical arrows provide intuitions
for equations 1 and 2.

of executions is exactly µ, the original code performs Bµ and the
pipelined code performs P; E .

The translation validation algorithm that we define in section 5
is based on checking minor variations of conditions 1 and 2, along
with some additional conditions on the evolutions of variable i
(also checked using symbolic evaluation). Before presenting this
algorithm, proving that it is sound, and arguing that it is complete in
practice, we first need to define symbolic evaluation more precisely
and study its algebraic structure.

4. Symbolic evaluation with observables
In this section, we formally define the form of symbolic evaluation
used in our validator. Similar forms of symbolic evaluation are at
the core of several other translation validators, such as those of
Necula [18], Rival [24], and Tristan and Leroy [26].

4.1 The intermediate language
We perform symbolic evaluation over the following simple lan-
guage of basic blocks:

Non-branching instructions:
I ::= r := r′ variable-variable move

| r := op(op, ~r) arithmetic operation
| r := load(κ, raddr) memory load
| store(κ, raddr, rval) memory store

Basic blocks:
B ::= I1; . . . ; In instruction sequences

Here, r ranges over variable names (a.k.a. pseudo-registers or tem-
poraries); op ranges over arithmetic operators (such as “load inte-
ger constant n” or “add integer immediate n” or “float multiply”);
and κ stands for a memory quantity (such as “8-bit signed integer”
or “64-bit float”).

4.2 Symbolic states
The symbolic evaluation of a block produces a pair (ϕ, σ) of a
mapping ϕ from resources to terms, capturing the relationship
between the initial and final values of resources, and a set of
terms σ, recording the computations performed by the block.

Resources:
ρ ::= r | Mem

Terms:
t ::= ρ0 initial value of ρ

| Op(op,~t) result of an operation
| Load(κ, taddr, tm) result of a load
| Store(κ, taddr, tval, tm) effect of a store

Resource maps:
ϕ ::= ρ 7→ t finite map

Computations performed:
σ ::= {t1; . . . ; tn} finite set

Symbolic states:
A ::= (ϕ, σ)

Resource maps symbolically track the values of variables and the
memory state, represented like a ghost variable Mem. A resource ρ
that is not in the domain of a map ϕ is considered mapped to ρ0.
Memory states are represented by terms tm built out of Mem0 and
Store(. . .) constructors. For example, the following block

store(κ, x, y); z := load(κ,w)

symbolically evaluates to the following resource map:

Mem 7→ Store(κ, x0, y0, Mem0)

z 7→ Load(κ,w0, Store(κ, x0, y0, Mem0))

Resource maps describe the final state after execution of a basic
block, but do not capture all intermediate operations performed.
This is insufficient if some intermediate operations can fail at run-
time (e.g.integer divisions by zero or loads from a null pointer).
Consider for example the two blocks

y := x and y := load(int32, x);
y := x

They have the same resource map, namely y 7→ x0, yet the right-
most block right can cause a run-time error if the pointer x is null,
while the leftmost block never fails. Therefore, resource maps do
not suffice to check that two blocks have the same semantics; they
must be complemented by sets σ of symbolic terms, recording all
the computations that are performed by the blocks, even if these
computations do not contribute directly to the final state. Continu-
ing the example above, the leftmost block has σ = ∅ (a move is not
considered as a computation, since it cannot fail) while the right-
most block has σ′ = {Load(int32, x0, Mem0)}. Since these two
sets differ, symbolic evaluation reveals that the two blocks above
are not semantically equivalent with respect to run-time errors.

4.3 Composition
A resource map ϕ can be viewed as a parallel substitution of
symbolic terms for resources: the action of a map on a term t is
the term ϕ(t) obtained by replacing all occurrences of ρ0 in t by
the term associated with ρ in ϕ. Therefore, the reverse composition
ϕ1;ϕ2 of two maps is, classically,

ϕ1;ϕ2
def
= {ρ 7→ ϕ1(ϕ2(ρ)) | ρ ∈ Dom(ϕ1) ∪Dom(ϕ2)} (3)

The reverse composition operator extends naturally to abstract
states:

(ϕ1, σ1); (ϕ2, σ2)
def
= (ϕ1;ϕ2, σ1 ∪ {ϕ1(t) | t ∈ σ2}) (4)

Composition is associative and admits the identity abstract state
ε

def
= (∅, ∅) as neutral element.

4.4 Performing symbolic evaluation
The symbolic evaluation α(I) of a single instruction I is the ab-
stract state defined by

α(r := r′) = (r 7→ r′0, ∅)
α(r := op(op, ~r)) = (r 7→ t, {t})

where t = Op(op, ~r0)

α(r := load(κ, r′)) = (r 7→ t, {t})
where t = Load(κ, r′0, Mem0)

α(store(κ, r, r′)) = (Mem 7→ tm, {tm})
where tm = Store(κ, r0, r

′
0, Mem0)

Symbolic evaluation then extends to basic blocks, by composing
the evaluations of individual instructions:

α(I1; . . . ; In)
def
= α(I1); . . . ;α(In) (5)

By associativity, it follows that symbolic evaluation distributes over
concatenation of basic blocks:

α(B1;B2) = α(B1);α(B2) (6)

4.5 Comparing symbolic states
We use two notions of equivalence between symbolic states. The
first one, written ∼, is defined as strict syntactic equality:2

(ϕ, σ) ∼ (ϕ′, σ′) if and only if ∀ρ, ϕ(ρ) = ϕ′(ρ) and σ = σ′

(7)
The relation ∼ is therefore an equivalence relation, and is compat-
ible with composition:

A1 ∼ A2 =⇒ A1;A ∼ A2;A (8)
A1 ∼ A2 =⇒ A;A1 ∼ A;A2 (9)

We need a coarser equivalence between symbolic states to ac-
count for the differences in variable usage between the code before
and after software pipelining. Recall that pipelining may perform
modulo variable expansion to avoid read-after-write hazards. This
introduces fresh temporary variables in the pipelined code. These
fresh variables show up in symbolic evaluations and prevent strict
equivalence ∼ from holding. Consider:

x := op(op, x) and x′ := op(op, x)
x := x′

These two blocks have different symbolic evaluations (in the sense
of the ∼ equivalence), yet should be considered as semantically
equivalent if the temporary x′ is unused later.

Let θ be a finite set of variables: the observable variables. (In
our validation algorithm, we take θ to be the set of all variable
mentioned in the original code before pipelining; the fresh tem-
poraries introduced by modulo variable expansion are therefore not
in θ.) Equivalence between symbolic states up to the observables θ
is written ≈θ and defined as

(ϕ, σ) ≈θ (ϕ′, σ′) if and only if

∀ρ ∈ θ ∪ {Mem}, ϕ(ρ) = ϕ′(ρ) and σ = σ′ (10)

The relation ≈θ is an equivalence relation, coarser than ∼, and
compatible with composition on the right:

A1 ∼ A2 =⇒ A1 ≈θ A2 (11)
A1 ≈θ A2 =⇒ A;A1 ≈θ A;A2 (12)

However, it is not, in general, compatible with composition on
the left. Consider an abstract state A that maps a variable x ∈ θ
to a term t containing an occurrence of y /∈ θ. Further assume
A1 ≈θ A2. The composition A1;A maps x to A1(t); likewise,
A2;A maps x to A2(t). Since y /∈ θ, we can have A1(y) 6= A2(y)
and therefore A1(t) 6= A2(t) without violating the hypothesis
A1 ≈θ A2. Hence, A1;A ≈θ A2;A does not hold in general.

To address this issue, we restrict ourselves to symbolic states
A that are contained in the set θ of observables. We say that a

2 We could relax this definition in two ways. One is to compare symbolic
terms up to a decidable equational theory capturing algebraic identities such
as x × 2 = x + x. This enables the validation of e.g. instruction strength
reduction [18, 24]. Another relaxation is to require s′ ⊆ s instead of s =
s′, enabling the transformed basic block to perform fewer computations
than the original block (e.g. dead code elimination). Software pipelining
being a purely lexical transformation that changes only the placement of
computations but not their nature nor their number, these two relaxations are
not essential and we stick with strict syntactic equality for the time being.

Semantic interpretation of arithmetic and memory operations:

op : list val→ option val

load : quantity× val× mem→ option val

store : quantity× val× val× mem→ option mem

Transition semantics for instructions:

r := r′ : (R,M)→ (R[r ← R(r′)],M)

op(R(~r)) = bvc
r := op(op, ~r) : (R,M)→ (R[r ← v],M)

load(κ,R(raddr),M) = bvc
r := load(κ, raddr) : (R,M)→ (R[r ← v],M)

store(κ,R(raddr), R(rval),M) = bM ′c
store(κ, raddr, rval) : (R,M)→ (R,M ′)

Transition semantics for basic blocks:

ε : S
∗→ S

I : S → S′ B : S′
∗→ S′′

I.B : S
∗→ S′′

Figure 4. Operational semantics for basic blocks

symbolic term t is contained in θ, and write t v θ, if all variables x
appearing in t belong to θ. We extend this notion to symbolic states
as follows:

(ϕ, σ) v θ if and only if
∀ρ ∈ θ ∪ {Mem}, ϕ(ρ) v θ and ∀t ∈ σ, t v θ (13)

It is easy to see that ≈θ is compatible with composition on the left
if the right symbolic state is contained in θ:

A1 ≈θ A2 ∧ A v θ =⇒ A1;A ≈θ A2;A (14)

The containment relation enjoys additional useful properties:

A1 v θ ∧ A1 ≈θ A2 =⇒ A2 v θ (15)
A1 v θ ∧ A2 v θ =⇒ (A1;A2) v θ (16)

4.6 Semantic soundness
The fundamental property of symbolic evaluation is that if
α(B1) ≈θ α(B2), the two blocks B1 and B2 have the same
run-time behavior, in a sense that we now make precise.

We equip our language of basic blocks with the straightforward
operational semantics shown in figure 4. The behavior of arithmetic
and memory operations is axiomatized as functions op, load and
store that return “option” types to model run-time failures: the
result ∅ (pronounced “none”) denotes failure; the result bxc (pro-
nounced “some x”) denotes success. In our intended application,
these interpretation functions are those of the RTL intermediate lan-
guage of the CompCert compiler [12, section 6.1] and of its mem-
ory model [13].

The semantics for a basic block B is, then, given as the relation
B : S

∗→ S′, sometimes also written S B→ S′, where S is the initial
state and S′ the final state. States are pairs (R,M) of a variable
state R, mapping variables to values, and a memory state M .

We say that two execution states S = (R,M) and S′ =
(R′,M ′) are equivalent up to the observables θ, and write S ∼=θ

S′, if M = M ′ and R(r) = R′(r) for all r ∈ θ.

THEOREM 1 (Soundness of symbolic evaluation). Let B1 and B2

be two basic blocks. Assume that α(B1) ≈θ α(B2) and α(B2) v

θ. If B1 : S
∗→ S′ and S ∼=θ T , there exists T ′ such that

B2 : T
∗→ T ′ and S′ ∼=θ T

′.

We omit the proof, which is similar to that of Lemma 3 in [26].

5. The validation algorithm
We can now piece together the intuitions from section 3 and the
definitions from section 4 to obtain the following validation algo-
rithm:

validate (i,N,B) (P,S, E , µ, δ) θ =
α(Bµ) ≈θ α(P; E) (A)
∧ α(E ;Bδ) ≈θ α(S; E) (B)
∧ α(B) v θ (C)
∧ α(B)(i) = Op(addi(1), i0) (D)
∧ α(P)(i) = α(Bµ)(i) (E)
∧ α(S)(i) = α(Bδ)(i) (F)
∧ α(E)(i) = i0 (G)
∧ α(B)(N) = α(P)(N) = α(S)(N) = α(E)(N) = N0 (H)

The inputs of the validator are the components of the loops be-
fore (i,N,B) and after (P,S, E , µ, δ) pipelining, as well as the
set θ of observables. Checks A and B correspond to equations
(1) and (2) of section 3, properly reformulated in terms of equiva-
lence up to observables. Check C makes sure that the set θ of ob-
servables includes at least the variables appearing in the symbolic
evaluation of the original loop body B. Checks D to G ensure that
the loop index i is incremented the way we expect it to be: by one
in B, by µ in P , by δ in S, and not at all in E . (We write α(B)(i) to
refer to the symbolic term associated to i by the resource map part
of the symbolic state α(B).) Finally, check H makes sure that the
loop limit N is invariant in both loops.

The algorithm above has low computational complexity. Using
a hash-consed representation of symbolic terms, the symbolic eval-
uation α(B) of a block B containing n instructions can be com-
puted in time O(n logn): for each of the n instructions, the algo-
rithm performs one update on the resource map, one insertion in the
constraint set, and one hash-consing operation, all of which can be
done in logarithmic time. (The resource map and the constraint set
have sizes at most n.) Likewise, the equivalence and containment
relations (≈θ and v) can be decided in time O(n logn). Finally,
note that this O(n logn) complexity holds even if the algorithm is
implemented within the Coq specification language, using persis-
tent, purely functional data structures.

The running time of the validation algorithm is therefore
O(n logn) where n = max(µ|B|, δ|B|, |P|, |S|, |E|) is pro-
portional to the size of the loop after pipelining. Theoretically,
software pipelining can increase the size of the loop quadratically.
In practice, we expect the external implementation of software
pipelining to avoid this blowup and produce code whose size is
linear in that of the original loop. In this case, the validator runs in
time O(n logn) where n is the size of the original loop.

6. Soundness proof
In this section, we prove the soudness of the validator: if it returns
“true”, the software pipelined loop executes exactly like the origi-
nal loop. The proof proceeds in two steps: first, we show that the ba-
sic blocksXN and YN obtained by unrolling the two loops have the
same symbolic evaluation and therefore execute identically; then,
we prove that the concrete execution of the two loops in the CFG
match.

6.1 Soundness with respect to the unrolled loops
We first show that the finitary conditions checked by the validator
imply the infinitary equivalences between the symbolic evaluations
of XN and YN sketched in section 3.

LEMMA 2. If validate (i,N,B) (P,S, E , µ, δ) θ returns true,
then, for all n,

α(Bµ+nδ) ≈θ α(P;Sn; E) (17)
α(P;Sn; E) v θ (18)

α(Bµ+nδ)(i) = α(P;Sn)(i) = α(P;Sn; E)(i) (19)

Proof: By hypothesis, we know that the properties A to H checked
by the validator hold. First note that

∀n, α(Bn) v θ (20)

as a consequence of check C and property (16).
Conclusion (17) is proved by induction on n. The base case n =

0 reduces to α(Bµ) ≈θ α(P; E), which is ensured by check A. For
the inductive case, assume α(Bµ+nδ) ≈θ α(P;Sn; E).

α(Bµ+(n+1)δ) ≈θ α(Bµ+nδ);α(Bδ)
(by distributivity (6))

≈θ α(P;Sn; E);α(Bδ)
(by left compatibility (14) and ind. hyp.)

≈θ α(P;Sn);α(E ;Bδ)
(by distributivity (6))

≈θ α(P;Sn);α(S; E)
(by check B, right compatibility (12), and (20))

≈θ α(P;Sn+1; E)
(by distributivity (6))

Conclusion (18) follows from (17), (20), and property (15). Con-
clusion (19) follows from checks E, F and G by induction on n.

2

THEOREM 3. Assume that validate (i,N,B) (P,S, E , µ, δ) θ
returns true. Consider an execution BN : S

∗→ S′ of the unrolled
initial loop, with N ≥ µ. Assume S ∼=θ T . Then, there exists a
concrete state T ′ such that

P;Sκ(N); E ;Bρ(N) : T
∗→ T ′ (21)

S′ ∼=θ T
′ (22)

Moreover, execution (21) decomposes as follows:

T
P→ T0

S→ · · · S→| {z }
κ(N) times

Tκ(N)
E→ T ′0

B→ · · · B→| {z }
ρ(N) times

T ′ρ(N) = T ′ (23)

and the values of the loop index i in the various intermediate states
satisfy

Tj(i) = S(i) + µ+ δj (mod 232) (24)

T ′j(i) = S(i) + µ+ δ × κ(N) + j (mod 232) (25)

Proof: As a corollary of Lemma 2, properties (17) and (18), we
obtain

α(BN) ≈θ α(P;Sκ(N); E ;Bρ(N))

α(P;Sκ(N); E ;Bρ(N)) v θ

sinceN = µ+δ×κ(N)+ρ(N). The existence of T ′ then follows
from Theorem 1.

It is obvious that the concrete execution of the pipelined code
can be decomposed as shown in (23). Check D in the validator

CFG instructions:
Ig ::= (I, `) non-branching instr.

| (if(r < r′), `t, `f) conditional branch
CFG:

g ::= ` 7→ Ig finite map

Transition semantics:

g(`) = (I, `′) I : (R,M)→ (R′,M ′) (as in figure 4)

g : (`, R,M)→ (`′, R′,M ′)

g(`) = (if(r < r′), `t, `f) `′ =

(
`t if R(r) < R(r′)

`f if R(r) ≥ R(r′)

g : (`, R,M)→ (`′, R,M)

Figure 5. A simple language of control-flow graphs

guarantees that Sj+1(i) = Sj(i) + 1 (mod 232), which implies
Sj(i) = S(i) + j mod 232. Combined with conclusion (19) of
Lemma 2, this implies equation (24):

Tj(i) = Sµ+δj(i) = S(i) + µ+ δj (mod 232)

as well as

T ′0(i) = Sµ+δ×κ(N)(i) = S(i) + µ+ δ × κ(N) (mod 232)

Check D entails that T ′j(i) = T ′0(i) + j mod 232. Equation (25)
therefore follows. 2

6.2 Soundness with respect to CFG loops
The second and last part of the soundness proof extends the
semantic preservation results of theorem 3 from the unrolled
loops in a basic-block representation to the actual loops in a CFG
(control-flow graph) representation, namely the loops before and
after pipelining depicted in figure 2. This extension is intuitively
obvious but surprisingly tedious to formalize in full details: indeed,
this is the only result in this paper that we have not yet mechanized
in Coq.

Our final objective is to perform instruction scheduling on the
RTL intermediate language from the CompCert compiler [12, sec-
tion 6.1]. To facilitate exposition, we consider instead the simpler
language of control-flow graphs defined in figure 5. The CFG g
is represented as partial map from labels ` to instructions Ig . An
instruction can be either a non-branching instruction I or a condi-
tional branch if(r < r′), complemented by one or two labels de-
noting the successors of the instruction. The operational semantics
of this language is given by a transition relation g : (`, R,M) →
(`′, R′,M ′) between states comprising a program point `, a regis-
ter state R and a memory state M .

The following trivial lemma connects the semantics of basic
blocks (figure 4) with the semantics of CFGs (figure 5). We say
that a CFG g contains the basic block B between points ` and `′,
and write g,B : ` ; `′, if there exists a path in g from ` to `′ that
“spells out” the instructions I1, . . . , In of B:

g(`) = (I1, `1) ∧ g(`1) = (I2, `2) ∧ · · · ∧ g(`n) = (In, `
′)

LEMMA 4. Assume g,B : ` ; `′. Then, g : (`, S)
∗→ (`′, S′) if

and only if B : S
∗→ S′.

In the remainder of this section, we consider two control-flow
graphs: g for the original loop before pipelining, depicted in part (a)
of figure 2, and g′ for the loop after pipelining, depicted in part (b)
of figure 2. (Note that figure 2 is not a specific example: it describes

the general shape of CFGs accepted and produced by all software
pipelining optimizations we consider in this paper.) We now use
lemma 4 to relate a CFG execution of the original loop g with the
basic-block execution of its unrolling.

LEMMA 5. Assume α(B)(i) = Op(addi(1), i0) and α(B)(N) =

N0. Consider an execution g : (in, S)
∗→ (out, S′) from point in

to point out in the original CFG, with S(i) = 0. Then, BN : S
∗→

S′ where N is the value of variable N in state S.

Proof: The CFG execution can be decomposed as follows:

(in, S0)→ (x, S0)
∗→ (in, S1)→ · · ·

∗→ (in, Sn)→ (out, Sn)

with S = S0 and S′ = Sn and Sn(i) ≥ Sn(N) and Sj(i) <
Sj(N) for all j < n. By construction of B, we have g,B : x ; in.
Therefore, by Lemma 4, B : Sj

∗→ Sj+1 for j = 0, . . . , n − 1.
It follows that Bn : S

∗→ S′. Moreover, at each loop iteration,
variable N is unchanged and variable i is incremented by 1. It
follows that the number n of iterations is equal to the value N of
variable N in initial state S. This is the expected result. 2

Symmetrically, we can reconstruct a CFG execution of the
pipelined loop g′ from the basic-block execution of its unrolling.

LEMMA 6. Let Tinit be an initial state where variable i has value
0 and variableN has valueN . Let T be Tinit where variableM is
set to µ + δ × κ(N). Assume that properties (23), (24) and (25)
hold, as well as check H. We can, then, construct an execution
g′ : (in, Tinit)

∗→ (out, T ′) from point in to point out in the
CFG g′ after pipelining.

Proof: By construction of g′, we have g′,P : c ; d and g′,S :
f ; d and g′, E : e ; g and g′,B : h ; g. The result is
obvious if N < µ. Otherwise, applying Lemma 4 to the basic-
block executions given by property (23), we obtain the following
CFG executions:

g′ : (in, Tinit)
∗→ (c, T)

g′ : (c, T)
∗→ (d, T0)

g′ : (f, Tj)
∗→ (d, Tj+1) for j = 0, . . . , κ(N)− 1

g′ : (e, Tκ(N))
∗→ (g, T ′0)

g′ : (h, T ′j)
∗→ (g, T ′j+1) for j = 0, . . . , ρ(N)− 1

The variables N and M are invariant between points c and out:
N because of check H, M because it is a fresh variable. Using
properties (24) and (25), we see that the condition at point d is true
in states T0, . . . , Tκ(N)−1 and false in state Tκ(N). Likewise, the
condition at point g is true in states T ′0, . . . , T ′ρ(N)−1 and false in
state T ′ρ(N). The expected result follows. 2

Piecing everything together, we obtain the desired semantic
preservation result.

THEOREM 7. Assume that validate (i,N,B) (P,S, E , µ, δ) θ
returns true. Let g and g′ be the CFG before and after pipelining,
respectively. Consider an execution g : (in, S)

∗→ (out, S′) with
S(i) = 0. Then, for all states T such that S ∼=θ T , there exists a
state T ′ such that g′ : (in, T)

∗→ (out, T ′) and S′ ∼=θ T
′.

Proof: Follows from Theorem 3 and Lemmas 5 and 6. 2

7. Discussion of completeness
Soundness (rejecting all incorrect code transformations) is the fun-
damental property of a validator; but relative completeness (not re-
jecting valid code transformations) is important in practice, since

a validator that reports many false positives is useless. Seman-
tic equivalence between two arbitrary pieces of code being unde-
cidable, a general-purpose validation algorithm cannot be sound
and complete at the same time. However, a specialized valida-
tor can still be sound and complete for a specific class of pro-
gram transformations—in our case, software pipelining optimiza-
tions based on modulo scheduling and modulo variable expansion.
In this section, we informally discuss the sources of potential in-
completeness for our validator.

Mismatch between infinitary and finitary symbolic evaluation A
first source of potential incompleteness is the reduction of the
infinitary condition ∀N, α(XN) = α(YN) to the two finitary
checks A and B. More precisely, the soundness proof of section 6
hinges on the following implication being true:

(A) ∧ (B) =⇒ (17)

or in other words,

α(Bµ) ≈θ α(P; E) ∧ α(E ;Bδ) ≈θ α(S; E)
=⇒ ∀n, α(Bµ+nδ) ≈θ α(P;Sn; E)

However, the reverse implication does not hold in general. Assume
that (17) holds. Taking n = 0, we obtain equation (A). However,
we cannot prove (B). Exploiting (17) for n and n+1 iterations, we
obtain:

α(Bµ+nδ) ≈θ α(P;Sn);α(E)
α(Bµ+nδ);α(Bδ) ≈θ α(P;Sn);α(S; E)

Combining these two equivalences, it follows that

α(P;Sn);α(E ;Bδ) ≈θ α(P;Sn);α(S; E) (26)

However, we cannot just “simplify on the left” and conclude
α(E ;Bδ) ≈θ α(S; E). To see why such simplifications are
incorrect, consider the two blocks

x := 1; and x := 1;
y := 1 y := x

We have α(x := 1);α(y := 1) ≈θ α(x := 1);α(y := x) with
θ = {x, y}. However, the equivalence α(y := 1) ≈θ α(y := x)
does not hold.

Coming back to equation (26), the blocks E ;Bδ and S; E could
make use of some property of the state set up by P;Sn (such as the
fact that x = 1 in the simplified example above). However, (26)
holds for any number n of iteration. Therefore, this hypothetical
property of the state that invalidates (B) must be a loop invariant.
We are not aware of any software pipelining algorithm that takes
advantage of loop invariants such as x = 1 in the simplified
example above.

In conclusion, the reverse implication (17) =⇒ (A) ∧ (B),
which is necessary for completeness, is not true in general, but
we strongly believe it holds in practice as long as the software
pipelining algorithm used is purely syntactic and does not exploit
loop invariants.

Mismatch between symbolic evaluation and concrete executions
A second, more serious source of incompleteness is the following:
equivalence between the symbolic evaluations of two basic blocks
is a sufficient, but not necessary condition for those two blocks to
execute identically. Here are some counter-examples.

1. The two blocks could execute identically because of some prop-
erty of the initial state, as in

y := 1 vs. y := x

assuming x = 1 initially.

2. Symbolic evaluation fails to account for some algebraic proper-
ties of arithmetic operators:

i := i+ 1; vs. i := i+ 2
i := i+ 1

3. Symbolic evaluation fails to account for memory separation
properties within the same memory block:

store(int32, p+ 4, y); vs. x := load(int32, p);
x := load(int32, p) store(int32, p+ 4, y)

4. Symbolic evaluation fails to account for memory separation
properties within different memory blocks:

store(int32, a, y); vs. x := load(int32, b);
x := load(int32, b) store(int32, a, y)

assuming that a and b point to different arrays.

Mismatches caused by specific properties of the initial state, as in
example 1 above, are not a concern for us: as previously argued,
it is unlikely that the pipelining algorithm would take advantage
of these properties. The other three examples are more problem-
atic: software pipeliners do perform some algebraic simplifications
(mostly, on additions occurring within address computations and
loop index updates) and do take advantage of nonaliasing proper-
ties to hoist loads above stores.

Symbolic evaluation can be enhanced in two ways to address
these issues. The first way, pioneered by Necula [18], consists in
comparing symbolic terms and states modulo an equational theory
capturing the algebraic identities and “good variable” properties of
interest. For example, the following equational theory addresses the
issues illustrated in examples 2 and 3:

Op(addi(n), Op(addi(m), t)) ≡ Op(addi(n+m), t)

Load(κ′, t1, Store(κ, t2, tv, tm)) ≡ Load(κ′, t2, tm)

if |t2 − t1| ≥ sizeof(κ)

The separation condition between the symbolic addresses t1 and
t2 can be statically approximated using a decision procedure such
as Pugh’s Omega test [21]. In practice, a coarse approximation,
restricted to the case where t1 and t2 differ by a compile-time
constant, should work well for software pipelining.

A different extension of symbolic evaluation is needed to ac-
count for nonaliasing properties between separate arrays or mem-
ory blocks, as in example 4. Assume that these nonaliasing prop-
erties are represented by region annotations on load and store in-
structions. We can, then, replace the single resource Mem that sym-
bolically represent the memory state by a family of resources Memx

indexed by region identifiers x. A load or store in region x is, then,
symbolically evaluated in terms of the resource Memx. Continuing
example 4 above and assuming that the store takes place in region a
and the load in region b, both blocks symbolically evaluate to

Mem
a 7→ Store(int32, a0, y0, Mem

a
0)

x 7→ Load(int32, b0, Mem
b
0)

8. Implementation and preliminary experiments
The first author implemented the validation algorithm presented
here as well as a reference software pipeliner. Both components are
implemented in OCaml and were connected with the CompCert C
compiler for testing.

The software pipeliner accounts for approximately 2000 lines
of OCaml code. It uses a backtracking iterative modulo scheduler
[2, chapter 20] to produce a steady state. Modulo variable expan-
sion is then performed following Lam’s approach [10]. The mod-
ulo scheduler uses a heuristic function to decide the order in which

Figure 6. The symbolic values assigned to register 50 (left) and to its pipelined counterpart, register 114 (right). The pipelined value lacks
one iteration due to a corner case error in the implementation of the modulo variable expansion. Symbolic evaluation was performed by
omitting the prolog and epilog moves, thus showing the difference in register use.

to consider the instructions for scheduling. We tested our software
pipeliner with two such heuristics. The first one randomly picks the
nodes. We use it principally to stress the pipeliner and the valida-
tor. The second one picks the node using classical dependencies
constraints. We also made a few schedules by hand.

We experimented our pipeliner on the CompCert benchmark
suite, which contains, among others, some numerical kernels
such as a fast Fourier transform. On these examples, the pipeliner
performs significant code rearrangements, although the observed
speedups are modest. There are several reasons for this: we do not
exploit the results of an alias analysis; our heuristics are not state of
the art; and we ran our programs on an out-of-order PowerPC G5
processor, while software pipelining is most effective on in-order
processors.

The implementation of the validator follows very closely the al-
gorithm presented in this paper. It accounts for approximately 300
lines of OCaml code. The validator is instrumented to produce a lot
of debug information, including in the form of drawings of sym-
bolic states. The validator found many bugs during the develop-
ment of the software pipeliner, especially in the implementation of
modulo variable expansion. The debugging information produced
by the validator was an invaluable tool to understand and correct
these mistakes. Figure 6 shows the diagrams produced by our val-
idator for one of these bugs. We would have been unable to get the
pipeliner right without the help of the validator.

On our experiments, the validator reported no false alarms. The
running time of the validator is negligible compared with that of
the software pipeliner itself (less than 5%). However, our software
pipeliner is not state-of-the-art concerning the determination of
the minimal initiation interval, and therefore is relatively costly in
terms of compilation time.

Concerning formal verification, the underlying theory of sym-
bolic evaluation (section 4) and the soundness proof with respect to
unrolled loops (section 6.1) were mechanized using the Coq proof
assistant. The Coq proof is not small (approximately 3500 lines)
but is relatively straightforward: the mechanization raised no un-
expected difficulties. The only part of the soundness proof that we
have not mechanized yet is the equivalence between unrolled loops
and their CFG representations (section 6.2): for such an intuitively
obvious result, a mechanized proof is infuriatingly difficult. Simply
proving that the situation depicted in figure 2(a) holds (we have a
proper, counted loop whose body is the basic block B) takes a great
deal of bureaucratic formalization. We suspect that the CFG repre-
sentation is not appropriate for this kind of proofs; see section 10
for a discussion.

9. Related work
This work is not the first attempt to validate software pipelining a
posteriori. Leviathan and Pnueli [14] present a validator for a soft-
ware pipeliner for the IA-64 architecture. The pipeliner makes use
of a rotating register file and predicate registers, but from a valida-
tion point of view it is almost the same problem as the one studied
in this paper. Using symbolic evaluation, the validator generates
a set of verification conditions that are discharged by a theorem
prover. We chose to go further with symbolic evaluation: instead
of using it to generate verification conditions, we use it to directly
establish semantic preservation. We believe that the resulting val-
idator is simpler and algorithmically more efficient. However, ex-
ploiting nonaliasing information during validation could possibly
be easier in Leviathan and Pnueli’s approach than in our approach.

Another attempt at validating software pipelining is the one of
Kundu et al. [9]. It proceeds by parametrized translation valida-
tion. The software pipelining algorithm they consider is based on
code motion, a rarely-used approach very different from the mod-
ulo scheduling algorithms we consider. This change of algorithms
makes the validation problem rather different. In the case of Kundu
et al. , the software pipeliner proceeds by repeated rewriting of the
original loop, with each rewriting step being validated. In contrast,
modulo scheduling builds a pipelined loop in one shot (usually us-
ing a backtracking algorithm). It could possibly be viewed as a se-
quence of rewrites but this would be less efficient than our solution.

Another approach to establishing trust in software pipelining
is run-time validation, as proposed by Goldberg et al. [5]. Their
approach takes advantages of the IA-64 architecture to instrument
the pipelined loop with run-time check that verify properties of the
pipelined loop and recover from unexpected problems. This tech-
nique was used to verify that aliasing is not violated by instruction
switching, but they did not verify full semantic preservation.

10. Conclusions
Software pipelining is one of the pinnacles of compiler optimiza-
tions; yet, its semantic correctness boils down to two simple se-
mantic equivalence properties between basic blocks. Building on
this novel insight, we presented a validation algorithm that is simple
enough to be used as a debugging tool when implementing software
pipelining, efficient enough to be integrated in production compil-
ers and executed at every compilation run, and mathematically ele-
gant enough to lend itself to formal verification.

Despite its respectable age, symbolic evaluation—the key tech-
nique behind our validator—finds here an unexpected application

to the verification of a loop transformation. Several known exten-
sions of symbolic evaluation can be integrated to enhance the preci-
sion of the validator. One, discussed in section 7, is the addition of
an equational theory and of region annotations to take nonaliasing
information into account. Another extension would be to perform
symbolic evaluation over extended basic blocks (acyclic regions of
the CFG) instead of basic blocks, like Rival [24] and Tristan and
Leroy [26] do. This extension could make it possible to validate
pipelined loops that contain predicated instructions or even condi-
tional branches.

From a formal verification standpoint, symbolic evaluation
lends itself well to mechanization and gives a pleasant denotational
flavor to proofs of semantic equivalence. This stands in sharp
contrast with the last step of our proof (section 6.2), where the
low-level operational nature of CFG semantics comes back to
haunt us. We are led to suspect that control-flow graphs are a poor
representation to reason over loop transformations, and to wish for
an alternate representation that would abstract the syntactic details
of loops just as symbolic evaluation abstracts the syntactic details
of (extended) basic blocks. Two promising candidates are the PEG
representation of Tate et al. [25] and the representation as sets of
mutually recursive HOL functions of Myreen and Gordon [17]. It
would be interesting to reformulate software pipelining validation
in terms of these representations.

Acknowledgments
This work was supported by Agence Nationale de la Recherche,
project U3CAT, program ANR-09-ARPEGE. We thank François
Pottier, Alexandre Pilkiewicz, and the anonymous reviewers for
their careful reading and suggestions for improvements.

References
[1] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers: principles,

techniques, and tools. Addison-Wesley, second edition, 2006.

[2] A. W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, 1998.

[3] C. W. Barret, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. Zuck.
TVOC: A translation validator for optimizing compilers. In Computer
Aided Verification, 17th Int. Conf., CAV 2005, volume 3576 of LNCS,
pages 291–295. Springer, 2005.

[4] J. M. Codina, J. Llosa, and A. González. A comparative study of
modulo scheduling techniques. In Proc. of the 16th international
conference on Supercomputing, pages 97–106. ACM, 2002.

[5] B. Goldberg, E. Chapman, C. Huneycutt, and K. Palem. Software
bubbles: Using predication to compensate for aliasing in software
pipelines. In 2002 International Conference on Parallel Architectures
and Compilation Techniques (PACT 2002), pages 211–221. IEEE
Computer Society Press, 2002.

[6] Y. Huang, B. R. Childers, and M. L. Soffa. Catching and identifying
bugs in register allocation. In Static Analysis, 13th Int. Symp., SAS
2006, volume 4134 of LNCS, pages 281–300. Springer, 2006.

[7] R. A. Huff. Lifetime-sensitive modulo scheduling. In Proc. of the
ACM SIGPLAN ’93 Conf. on Programming Language Design and
Implementation, pages 258–267. ACM, 1993.

[8] A. Kanade, A. Sanyal, and U. Khedker. A PVS based framework for
validating compiler optimizations. In SEFM ’06: Proceedings of the
Fourth IEEE International Conference on Software Engineering and
Formal Methods, pages 108–117. IEEE Computer Society, 2006.

[9] S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct
using parameterized program equivalence. In Proceedings of the 2009
Conference on Programming Language Design and Implementation
(PLDI 2009), pages 327–337. ACM Press, 2009.

[10] M. Lam. Software pipelining: An effective scheduling technique
for VLIW machines. In Proc. of the ACM SIGPLAN ’88 Conf. on

Programming Language Design and Implementation, pages 318–328.
ACM, 1988.

[11] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, 2009.

[12] X. Leroy. A formally verified compiler back-end. Journal of
Automated Reasoning, 2009. To appear.

[13] X. Leroy and S. Blazy. Formal verification of a C-like memory
model and its uses for verifying program transformations. Journal of
Automated Reasoning, 41(1):1–31, 2008.

[14] R. Leviathan and A. Pnueli. Validating software pipelining
optimizations. In Int. Conf. on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES 2002), pages 280–287. ACM Press,
2006.

[15] J. Llosa, A. González, E. Ayguadé, and M. Valero. Swing modulo
scheduling: A lifetime-sensitive approach. In IFIP WG10.3 Working
Conference on Parallel Architectures and Compilation Techniques,
pages 80–86, 1996.

[16] S. S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann, 1997.

[17] M. O. Myreen and M. J. C. Gordon. Transforming programs into
recursive functions. In Brazilian Symposium on Formal Methods
(SBMF 2008), volume 240 of ENTCS, pages 185–200. Elsevier,
2009.

[18] G. C. Necula. Translation validation for an optimizing compiler.
In Programming Language Design and Implementation 2000, pages
83–95. ACM Press, 2000.

[19] A. Pnueli, O. Shtrichman, and M. Siegel. The code validation
tool (CVT) – automatic verification of a compilation process.
International Journal on Software Tools for Technology Transfer,
2(2):192–201, 1998.

[20] A. Pnueli, M. Siegel, and E. Singerman. Translation validation.
In Tools and Algorithms for Construction and Analysis of Systems,
TACAS ’98, volume 1384 of LNCS, pages 151–166. Springer, 1998.

[21] W. Pugh. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. In Supercomputing ’91:
Proceedings of the 1991 ACM/IEEE conference on Supercomputing,
pages 4–13. ACM Press, 1991.

[22] B. R. Rau. Iterative modulo scheduling. International Journal of
Parallel Processing, 24(1):1–102, 1996.

[23] B. R. Rau, M. S. Schlansker, and P. P. Timmalai. Code generation
schema for modulo scheduled loops. Technical Report HPL-92-47,
Hewlett-Packard, 1992.

[24] X. Rival. Symbolic transfer function-based approaches to certified
compilation. In 31st symposium Principles of Programming
Languages, pages 1–13. ACM Press, 2004.

[25] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation:
a new approach to optimization. In 36th symposium Principles of
Programming Languages, pages 264–276. ACM Press, 2009.

[26] J.-B. Tristan and X. Leroy. Formal verification of translation
validators: A case study on instruction scheduling optimizations.
In 35th symposium Principles of Programming Languages, pages
17–27. ACM Press, 2008.

[27] J.-B. Tristan and X. Leroy. Verified validation of Lazy Code Motion.
In Proceedings of the 2009 Conference on Programming Language
Design and Implementation (PLDI 2009), pages 316–326. ACM
Press, 2009.

[28] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A methodology
for translation validation of optimizing compilers. Journal of
Universal Computer Science, 9(3):223–247, 2003.

[29] L. Zuck, A. Pnueli, and R. Leviathan. Validation of optimizing
compilers. Technical Report MCS01-12, Weizmann institute of
Science, 2001.

	Introduction
	Software pipelining
	Validation a posteriori
	Symbolic evaluation with observables
	The intermediate language
	Symbolic states
	Composition
	Performing symbolic evaluation
	Comparing symbolic states
	Semantic soundness

	The validation algorithm
	Soundness proof
	Soundness with respect to the unrolled loops
	Soundness with respect to CFG loops

	Discussion of completeness
	Implementation and preliminary experiments
	Related work
	Conclusions

