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Abstract

The problem of probabilistic modeling and inference, at a

high-level, can be viewed as constructing a (model, query,

inference) tuple, where an inference algorithm implements

a query on a model. Notably, the derivation of inference al-

gorithms can be a difficult and error-prone task. Hence, re-

searchers have explored how ideas from probabilistic pro-

gramming can be applied. In the context of constructing

these tuples, probabilistic programming can be seen as tak-

ing a language-based approach to probabilistic modeling and

inference. For instance, by using (1) appropriate languages

for expressing models and queries and (2) devising infer-

ence techniques that operate on encodings of models (and

queries) as program expressions, the task of inference can

be automated.

In this paper, we describe a compiler that transforms a

probabilistic model written in a restricted modeling language

and a query for posterior samples given observed data into

a Markov Chain Monte Carlo (MCMC) inference algorithm

that implements the query. The compiler uses a sequence of

intermediate languages (ILs) that guide it in gradually and

successively refining a declarative specification of a proba-

bilistic model and the query into an executable MCMC in-

ference algorithm. The compilation strategy produces com-

posable MCMC algorithms for execution on a CPU or GPU.

CCS Concepts •Mathematics of computing→Bayesian

networks; Bayesian computation; Markov-chain Monte

Carlo methods; •Software and its engineering→ Com-

pilers

Keywords probabilistic programming, intermediate lan-

guages, Markov-chain Monte Carlo kernels

1. Introduction

Consider the problem of clustering a set of data points in D-

dimensional Euclidean space R
D into K clusters. One ap-

proach is to construct a probabilistic (generative) model to

explain how we believe the observations are generated. For

instance, one explanation might be that there are (1) K clus-

ter centers chosen randomly according to a normal distribu-

tion and (2) that each data point (independently of each other

data point) is normally distributed around a randomly chosen

cluster center. This describes what is known as a Gaussian

Mixture Model (GMM).

More generally, a probabilistic model induces a probabil-

ity distribution, which we can query for quantities of interest.

For example, the query “what is the most likely cluster as-

signment of each observation under the GMM model?” for-

mulates our original problem of clustering a collection of

points in probabilistic terms. To answer such a query, prac-

titioners implement an inference algorithm. Inference is an-

alytically intractable in general. Consequently, practitioners

devote a significant amount of time to developing and im-

plementing approximate inference algorithms to (approxi-

mately) answer a query for a given model.

In summary, we can think of the problem of probabilis-

tic modeling and inference as constructing a (model, query,

inference) tuple, where the inference algorithm implements

a query on a model. To simplify this task, researchers have

explored how ideas from probabilistic programming can be

applied. In the context of constructing these tuples, prob-

abilistic programming can be seen as taking a language-

based approach to probabilistic modeling and inference. For

instance, by using (1) appropriate languages for express-

ing models and queries and (2) devising inference tech-

niques that operate on encodings of models (and queries)

as program expressions, the task of inference can be auto-

mated. Due to the promise of this approach, many proba-

bilistic programming languages (PPLs) have been proposed

in the literature to explore the various points of the design

space [5, 10, 11, 15, 16, 23, 26, 28, 29].

In this paper, we a present a tool called AugurV2 for

constructing (model, query, inference) tuples of a restricted
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form, where (1) the model is expressed in a domain-specific

modeling language similar in expressive power to Bugs [23]

or Stan [8] (as compared to modeling languages embed-

ded in general-purpose languages [11, 28]), (2) the query

is for posterior samples given observed data, and (3) the in-

ference is automatically derived and is restricted to a fam-

ily of algorithms based on MCMC sampling (as compared

to languages that provide a set of fixed inference strate-

gies [8, 23, 29] or those that provide domain-specific lan-

guages for the specification of inference [5, 14, 26]). Even in

this restricted setting, automating posterior inference based

on MCMC poses at least three challenges.

• As inference is intractable in general, it is unlikely that

a black-box approach to MCMC will work well for all

probabilistic models of interest. Consequently, we would

like a way to derive model-specific facts useful for con-

structing MCMC algorithms. For instance, systems such

as Bugs [23] leverage conjugacy relations and Stan [8]

leverages gradients.

• There are many kinds of MCMC algorithms. Ideally, our

tool should support as many as possible, given that these

algorithms may exhibit different computational and sta-

tistical behaviors depending on the model to which it is

applied. More generally, end users may want more fine-

grained control over how to perform inference. For exam-

ple, Blaise [5] provides a domain-specific graphical lan-

guage for expressing models and inference algorithms.

Other systems such as Edward [26] and Venture [14] ex-

plore other designs for providing fine-grained control of

inference.

• MCMC sampling is computationally expensive [7]. To

improve the computational efficiency, we may want to

leverage parallelism such as in our previous work on

Augur [27] and other systems such as Anglican [28].

Our solution is to come up with a sequence of interme-

diate languages (ILs) that enable our tool to gradually and

successively refine a declarative specification of a model

and a query for posterior samples into an executable Markov

Chain Monte Carlo (MCMC) inference algorithm. For the

purposes of this paper, we will refer to the process above

as compilation, and hence, will also refer to our tool as a

compiler. We address the challenges listed above with the

following aspects of our compiler design.

• The compiler uses a Density IL to express the density

factorization of a model (Section 3.1). This IL can be

analyzed to symbolically compute the conditionals of

a model so that the compiler can generate composable

MCMC algorithms.

• The compiler uses a Kernel IL to express the high-

level structure of a MCMC algorithm as a composi-

tion of MCMC algorithms (Section 4.1). In particular,

the AugurV2 compiler supports multiple kinds of basic

MCMC algorithms, including ones that leverage con-

jugacy relations (e.g., Gibbs) and gradient information

(e.g., HMC). The Kernel IL is similar to the subset of

the Blaise language [5] that corresponds to inference.

We use the IL for the purposes of compilation, whereas

Blaise focuses on the expressivity of the language.

• The compiler uses Low++ and Low-- ILs to express the

details of MCMC inference (Section 4.3). The first ex-

poses parallelism and the second exposes memory man-

agement. The AugurV2 compiler leverages these ILs to

support both CPU and GPU (Section 5) compilation of

composable MCMC algorithms.

Our preliminary experiments show that such a compilation

strategy both enables us to leverage the flexibility of com-

posable MCMC inference algorithms on the CPU and GPU

as well as improve upon the scalability of automated infer-

ence (Section 7). We have also found it relatively easy to add

new base MCMC updates to the compiler without restructur-

ing its design. Hence, the compiler is relatively extensible.

It would be an interesting direction to see what aspects of

AugurV2’s ILs and compilation strategy could be reused in

the context of a larger infrastructure for compiling PPLs, but

that is not in scope for this paper. AugurV2 is available at

https://github.com/danehuang/augurv2/.

2. AugurV2 Overview

At a high-level, the AugurV2 modeling language expresses

Bayesian networks whose graph structure is fixed. This class

contains many practical models of interest, including regres-

sion models, mixture models, topic models, and deep gener-

ative models such as sigmoid belief networks. Models that

cannot be expressed include ones that use non-parametric

distributions (which can be encoded in a general-purpose

language) and models with undirected dependency structure

(e.g., Markov random fields whose dependency structure is

hard to express in a functional setting). Note that even in this

setting, inference can still be difficult due to the presence of

high-dimensional distributions. For example, the dimension-

ality of a mixture model such as the GMM scales with the

number of observations—each observed point introduces a

corresponding latent (i.e., unobserved) cluster assignment.

Consequently, the design of AugurV2 focuses on generating

efficient MCMC algorithms for posterior inference on this

restricted class of models.

2.1 Probabilistic Modeling Setup

AugurV2 provides a simple, first-order modeling language

for expressing probabilistic generative models with density

factorization

p(θ, y) = p(θ) p(y | θ) ,

where p(θ) is a distribution over parameters θ called the

prior and p(y | θ) is the conditional distribution of the

data y given the parameters θ. In this paper, we will only
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(K, N, mu_0 , Sigma_0 , pis , Sigma) => {

param mu[k] ∼ MvNormal(mu_0 , Sigma_0)

for k <- 0 until K ;

param z[n] ∼ Categorical(pis)

for n <- 0 until N ;

data x[n] ∼ MvNormal(mu[z[n]], Sigma)

for n <- 0 until N ;

}

Figure 1: An AugurV2 program encoding a GMM. At a

high-level, the modeling language mirrors random variable

notation.

consider probability distributions with densities1, and hence,

will interchangeably use the two terms. Given observed data,

written y∗ to distinguish it from the formal parameter y in

the distribution p(y | θ), the AugurV2 system implements

a MCMC algorithm to draw samples from the posterior

distribution

p(θ | y∗) =
1

Z
p(θ) p(y∗ | θ) ,

where Z =
∫

p(θ) p(y∗ | θ) dθ. The notation p(y∗ | θ) is

perhaps better written as p(y = y∗ | θ) to indicate that it is a

function of θ and is known as the likelihood function. In the

rest of the section, we will show how to encode the GMM we

gave in the introduction in AugurV2’s modeling language,

how to use the system to perform posterior inference, and

overview the compilation process.

2.2 Modeling Language

Figure 1 contains an AugurV2 program expressing the

GMM we introduced earlier. At a high-level, the model-

ing language is designed to mirror random variable notation.

The model body is a sequence of declarations, each consist-

ing of a random variable and its distribution. Each declara-

tion is annotated as either a model parameter (param) or ob-

served data (data). Model parameters are inferred (i.e., out-

put) whereas model data is supplied by the user (i.e., input).

In the case of a GMM, the means mu and cluster assignments

z are model parameters2, while the x values are model data.

It is also possible to define a random variable as a deter-

ministic transformation of existing variables, although this

feature is not needed to express the GMM in this example.

At the top-level, the model closes over any free vari-

ables mentioned in the model body. These include the model

hyper-parameters (mu 0, Sigma 0, pis, Sigma) and any

other variables over which the model is parameterized by

(K, N). The modeling language can be considered as alterna-

tive notation for expressing the density factorization, which

1 That is, with respect to Lebesgue measure, counting measure, or their

products.
2 To be pedantic, we should call these latent variables.

,

import AugurV2Lib

import numpy as np

# Part 1: Load data

x = load_gmm_data(’/path/to/data’)

N, D = x.shape; K = 3

mu0 = np.zeros(D); S0 = np.eye(D);

S = np.eye(D); pis = np.full(K, 1.0/K)

# Part 2: Invoke AugurV2

with AugurV2Lib.Infer(’path/to/model’) as aug:

opt = AugurV2Lib.Opt(target=’cpu’)

aug.setCompileOpt(opt)

sched = ’ESlice mu (*) Gibbs z’

aug.setUserSched(sched)

aug.compile(K, N, mu0, S0, pis, S)(x)

samples = aug.sample(numSamples=1000)

Figure 2: Fitting a GMM with AugurV2 using a Python

interface.

we give for the GMM below.

K
∏

k=1

p(µk | µ0,Σ0)

N
∏

n=1

p(zn | π) p(y
∗
n | µzn)

Random vectors (e.g., mu[k]) are specified using compre-

hensions with the for construct. The semantics of AugurV2

comprehensions are parallel, meaning that they do not de-

pend on the order of evaluation. The idea is to provide a syn-

tactic construct that corresponds to the mathematical phrase

“let µk ∼ N ( ~µ0,Σ) for 0 ≤ k < K.” Because such a mathe-

matical statement is implicitly parallel and occurs frequently

in the definition of probabilistic models, we opt for syntactic

constructs that capture standard statistical practice, instead

of more standard programming language looping constructs

(e.g., an imperative for loop).

As AugurV2 provides only parallel comprehensions, we

discourage users from expressing models with sequential de-

pendencies. For example, we would need to write a Hidden

Markov Model, where each hidden state depends on the pre-

vious state, by unfolding the entire model. This is doable,

but does not take advantage of the design of AugurV2.

AugurV2 imposes two further restrictions. First, com-

prehension bounds cannot mention model parameters. This

forces the comprehension bounds to be constant (although

they can still be ragged). For this reason, we say that

AugurV2 expresses fixed-structure models. Second, AugurV2

provides only primitive distributions whose probability den-

sity function (PDF) or probability mass function (PMF) has

known functional form. Hence, the models AugurV2 ex-

presses are parametric. Currently, AugurV2 does not sup-

port non-parametric distributions (i.e., distributions with an

infinite number of parameters so that the number of param-

eters used scales with the number of observations).
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2.3 Using AugurV2

Figure 2 contains an example of how to invoke AugurV2’s

inference capabilities contained in the Python module AugurV2.

The first part of the code loads the data and hyper-parameters

and the second part invokes AugurV2.

Instances of the AugurV2Infer class provide meth-

ods for obtaining posterior samples (e.g., sample). The

class takes a path to a file containing the model. Once we

have created an instance of an AugurV2 inference object

(aug), we need to indicate to the compiler what kind of

MCMC sampler it should generate (via setCompileOpt

and setUserSched). For example, we can set the target for

compilation as either the CPU or GPU (target). We can

also customize the MCMC algorithm by choosing our own

MCMC schedule (via setUserSched).

In this example, we decide to apply Elliptical Slice sam-

pling [17] to the cluster means (ESlice mu) and Gibbs

sampling to the cluster assignments (Gibbs z). Hence, this

schedule indicates a compositional MCMC algorithm, where

we apply different MCMC updates to different portions of

the model. This feature is inspired by the programmable in-

ference proposed by other probabilistic programming sys-

tems (e.g., Venture [14]). If a user schedule is not specified,

the compiler uses a heuristic to select which combination of

MCMC methods to use.

To compile the model, we supply the model arguments,

hyper-parameters, and data (as Python variables) in the order

that they are specified in the model. Thus, the AugurV2 com-

piler is invoked at runtime. Consequently, given different

data sizes and hyper-parameter settings, the AugurV2 com-

piler may choose to generate a different MCMC algorithm.

The compiler generates Cuda/C code depending on whether

the target is the GPU or the CPU. The native inference code

is then further compiled using Nvcc (the Cuda compiler) or

Clang into a shared library which contains inference code

for a specific instantiation of a model. After compilation, the

object aug contains a collection of inference methods that

wrap the native inference code. The Python interface han-

dles the conversion of Python values to and from Cuda/C

via the Python CTypes interface. Hence, the user can work

exclusively in Python. In this example, we ask for 1000 sam-

ples from the posterior distribution.

2.4 Compilation Overview

The compiler uses ILs to structure the compilation (summa-

rized in Figure 3) from model and query into inference.3 No-

tably, the ILs enable the AugurV2 compiler to successively

and gradually refine a declarative specification of a model

and query into an executable inference algorithm that con-

tains details such as memory consumption and parallelism.

The successive removal of layers of abstraction is the typ-

3 The first author’s dissertation contains more details about AugurV2 and

its semantics.

Model

Lang.


CPU/GPU + 
runtime 


Density 
IL 


Kernel 
IL 


Frontend


Density  
IL 


Low+ IL 


Low-- IL 


Blk IL 


Cuda/
C


Middle-end


Backend


Figure 3: Overview of the AugurV2 compilation process. It

is comprised of a Frontend (model to density factorization),

Middle-end (density factorization to executable inference),

and Backend (executable inference to native inference).

ical manner in which ILs aid the compilation of traditional

language.

Of course, we will need a semantics to justify the com-

pilation process. The semantics of probabilistic programs is

an active area of research due to the need to model continu-

ous distributions and its interaction with standard program-

ming language features [6, 12, 25]. As AugurV2 provides

a simple language that intuitively expresses Bayesian net-

works, its semantics is not an issue, in contrast to more ex-

pressive languages that provide higher-order functions and

recursion. Nevertheless, we point out that AugurV2 can be

given semantics in terms of (Type-2) computable distribu-

tions [12]. This enables us to think of a compiler as a (com-

putable) function that witnesses the result that (Type-2) com-

putable distributions are realizable by (Type-2) computable

sampling algorithms. In our case, the compiler realizes a

MCMC sampling algorithm.

3. Frontend

In the first step of compilation, the compiler transforms a

model expressed in the modeling language into its corre-

sponding density factorization in the Density IL. This fol-

lows standard statistical practice, where models expressed

using random variables (AugurV2’s modeling language) are

converted into its description in terms of densities (Density

IL). The compiler can analyze the density factorization and

symbolically compute the conditionals (up to a normalizing

constant) of the model for each model parameter (see Sec-

tion 3.3) to support the generation of composable MCMC

algorithms. The analysis is based off the one implemented

in our previous work [27], although the results of the analy-

sis then were only used to generate Gibbs samplers.
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obj ::= λ(−→x ). fn gen ::= e until e

fn ::= pdist(−→e )(e) | fn fn |
∏

x←gen

fn

| let x = e in fn | [fn]x=e

e ::= x | i | r | dist(−→e ) | opn(−→e ) | e[e]

σ ::= Int | Real τ ::= σ | Vec τ | Mat σ

Figure 4: The Density IL encodes the density factorization

of a probabilistic model.

3.1 Representing Models: The Density IL

The syntax for the Density IL is summarized in Figure 4. It

encodes the density factorization of a model. As an example,

the GMM from before (Figure 1) is encoded in the Density

IL as

λ(K,N, µ0,Σ0, π,Σ, µ, z, x).
∏

k←gen
1

pN (µ0,Σ0)(µ[k])

∏

n←gen
2

pD(π)(z[n])
∏

n←gen
2

pN (µ[z[n]],Σ)(x[n] | µ[z[n]])

where gen1 = 0 until K and gen2 = 0 until N .

At the top-level, a model is represented as a single func-

tion λ(−→x ). fn with bindings −→x for model hyper-parameters,

meta-parameters, and data, and a density function body fn.

A density function is either (1) the density of a primitive, pa-

rameterized distribution pdist(
−→e ), (2) the composition of two

density functions fn1 fn2 (i.e., multiplication) of two density

functions, (3) a structured product
∏

x←gen fn that specifies

a product of density functions according to the comprehen-

sion x← gen, (4) a standard let-binding let x = e in fn,

or (5) an indicator function [fn]x=e that takes on the value

inside the brackets if the condition x = e is satisfied and 1
otherwise.

The Density IL is simply-typed. Base types include inte-

gers Int and reals Real. Compound types include vectors

Vec τ and matrices Mat σ. Thus, compound types such as

vectors of matrices are allowed, whereas matrices of vectors

are rejected. The type system is used to check simple proper-

ties. For example, the type system checks that densities are

defined on the appropriate spaces and that the comprehen-

sion bounds gen in a product of density function
∏

x←gen fn

is indeed a vector of integers.

3.2 MCMC and Conditionals

Before we describe the symbolic computation on the Den-

sity IL, we briefly introduce background on MCMC. Sup-

pose we would like to construct a sampler to draw from the

probability density p(x, y). The Metropolis Hastings (MH)

algorithm is a MCMC algorithm that gives a sampler for

p(x, y) given a transition function q(x, y → x′, y′), i.e., a

conditional density q(x′, y′ | x, y)4. The transition function

is also called a proposal. In particular, every MCMC algo-

rithm can be seen as a special case of the MH algorithm with

a proposal of a specific form. For instance, the HMC algo-

rithm uses a gradient-based proposal [7].

Given a multivariate distribution such as p(x, y), it may

be undesirable to construct the entire proposal q(x, y →
x′, y′) in a single step. For instance, the GMM has both dis-

crete and continuous variables, so one cannot directly ap-

ply the HMC algorithm (which uses gradients) to the entire

model without handling the discrete variables in a special

manner. Here, it is useful to construct the MCMC sampler

as the composition of two MCMC samplers, one that targets

the conditional p(x | y) and another that targets the con-

ditional p(y | x). In particular, this involves constructing

the two simpler proposals q1(x → x′; y) (holding y fixed)

and q2(y → y′;x) (holding x fixed). For situations like this,

the AugurV2 compiler supports the symbolic computation

of conditionals.

3.3 Approximating Conditionals

In a more traditional setting, one might represent the den-

sity factorization of a model using a Bayesian network. As

AugurV2 programs denote Bayesian networks, we could

compile the Density IL into a Bayesian network and use

standard, graph-based algorithms for determining how the

conditionals factorize. However, the resulting graph could

be quite large and would be difficult to use in other phases

of compilation (e.g., for generating GPU code). Instead,

the compiler symbolically computes the conditionals of the

model.

Computing the conditional of the density factorization

p(x) p(y | x) p(y | z) with respect to (w.r.t.) x up to a nor-

malizing constant is equivalent to simplifying the expression

below.

p(x | y, z) =
p(x) p(y | x) p(y | z)

∫

p(x) p(y | x) p(y | z)dx

The expression simplifies to

p(x | y, z) ∝ p(x) p(y | x)

where we cancel the terms that have no functional depen-

dence on x. This computation is isomorphic to the compu-

tation of conditional independence relationships in Bayesian

networks [4].

The challenge with symbolically computing conditionals

of the density factorization comes from handling structured

products in the Density IL. Conceptually, these products can

be unfolded because we compile at runtime when the size

of the structured product is known. However, the resulting

density factorization loses regularity and can be quite large.

Hence, the compiler treats structured products symbolically

at the cost of precision of the conditional computed.

4 More generally, q would be a probability kernel.
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For example, suppose we would like to compute the con-

ditional of
∏

k←gen

p(xk)
∏

k′←gen

p(yk′ | xk′)

w.r.t. xk for some k. In particular, the compiler cannot tell

that this expression simplifies to p(xk) p(yk | xk) because

the terms are syntactically different. To handle this, the com-

piler uses a factoring rewrite rule, given below.
∏

i←gen
1

fn1

∏

j←gen
2

fn2 →
∏

i←gen
1

fn1 fn2 when gen1 = gen2

As a reminder, comprehension bound expressions in AugurV2

cannot refer to random variables and so are constant. If the

compiler cannot determine the equality of comprehension

bounds, it will not be factored, and precision in the approxi-

mation of the conditional can be lost.

The compiler also implements the normalization rule
∏

i←geni

fn→
∏

k←genk

∏

i←geni

[fn]k=z ,

where z is a Categorical variable with range genk mentioned

in fn. This rule deals with mixture models, which is a com-

mon pattern in probabilistic models. For example, the con-

ditional of µ for the GMM (omitting the bounds)
∏

k

pN (µ0,Σ0)(µ[k])
∏

n

pN (µ[z[n]],Σ)(y[n])

can be transformed into
∏

k

pN (µ0,Σ0)(µ[k])
∏

k

∏

n

[pN (µ[z[n]],Σ)(y[n])]k=z[n] ,

after which we can apply the factoring rule. This says that

each cluster location µk depends only on the data points yn
whose cluster assignment zn is associated with the current

cluster k. Currently, the compiler attempts to apply the cat-

egorical indexing rule first and then attempts to factor. For

the restricted modeling language that we consider, we have

found the two normalization rules to be precise enough for

practical use.

4. Middle-End

The AugurV2 middle-end converts a model encoded as its

density factorization into a high-level, executable inference

algorithm. This phase uses two additional ILs. First, the Ker-

nel IL represents the high-level structure of a MCMC al-

gorithm as a composition of basic MCMC updates applied

to the model’s conditionals. Second, the Low++ IL serves

as the first pass target for executable MCMC code. It is an

imperative language that makes sources of parallelism ex-

plicit, but abstracts away memory management. Importantly,

we can leverage domain-specific knowledge of each base

MCMC update to directly annotate parallelism in the code.

Thus, we do not need to (re)discover parallelism at a lower-

level of abstraction.

sched α ::= λ(−→x ). k α

k α ::= (κ α) ku α | k α⊗ k α

ku ::= Single(x) | Block(−→x )

κ α ::= Prop (Maybe α) | FC

| Grad (Maybe α) | Slice

Figure 5: The Kernel IL encodes the structure of an MCMC

algorithm. It is parametric in α, which is instantiated with

successively lower level ILs that encode how the MCMC

algorithm is implemented.

4.1 Representing MCMC I: The Kernel IL

The AugurV2 compiler represents a MCMC algorithm as a

composition of base updates in the Kernel IL, whose syntax

is summarized in Figure 5. As an example, the user schedule

presented in Figure 2 is encoded in the Kernel IL as

λ(K,N, µ0,Σ0, π,Σ, µ, z, x).

Slice Single(µ) fnµ ⊗ FC Single(z) fnz ,

where fnµ and fnz correspond to the conditionals of µ and z
up to a normalizing constant respectively.

The syntax

Slice Single(µ) fnµ

encodes a base update indicating that we apply Slice sam-

pling to the variable µ with proportional conditional fnµ. The

kernel unit ku specifies whether we should sample a vari-

able x by itself (i.e., Single(x)), or whether to sample a

list of variables −→x jointly (i.e., Block(x)). Sampling vari-

ables jointly, also known as blocking, is useful when those

variables are heavily correlated. In general, a base update

κ ku α is parametric in the representation of the propor-

tional conditional α. This enables the compiler to succes-

sively instantiate α with lower-level ILs that expose more

computational details of inference (e.g., parallelism or mem-

ory usage). Given two MCMC updates k1 α and k2 α, we

can sequence (i.e., compose) the two updates with the syn-

tax k1 α ⊗ k2 α. Sequencing is not commutative, i.e., the

MCMC update k2 α⊗ k1 α is different from k1 α⊗ k2 α.

In addition to Slice (Slice) and closed-form conditional

updates (FC), the Kernel IL also supports proposal-based

updates (Prop) and gradient-based updates (Grad). These

updates each contain an optional piece of code of type α that

specifies the proposal and the gradient respectively for the

corresponding conditional that the base update is applied to.

In contrast, Slice and closed-form conditional updates can

be derived purely from the model conditionals.

The ergodic convergence of base MCMC kernels in the

Kernel IL can be established via standard proofs in the

MCMC literature [7, 24]. Composite kernels created with
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decl ::= name(−→x ){global : −→g , body : e, ret : e}

s ::= e | x sk e | e[−→e ] sk e | s s

| if(e){s}{s} | loop lk (i← gen){s}

sk ::= = | +=

lk ::= Seq | Par | AtmPar

e ::= x | i | r | dist(−→e ).dop | opn(−→e ) | e[e]

dop ::= ll | samp | gradi

Figure 6: The Low++ IL is an imperative language that

exposes parallelism in the computation of a MCMC update,

but abstracts away from details of memory management.

⊗ can be shown to preserve the weaker property of invari-

ance of the target distribution [24]. Ergodic convergence

of a compound MCMC kernel, which requires considera-

tions of irreducibility and aperiodicity, is not checked by the

compiler. Static checking of such properties would be an

interesting direction for future work.

4.2 Specifying a High-Level MCMC Algorithm

Once the compiler has decomposed the model according to

its unnormalized conditionals, it will determine which base

MCMC updates can be applied to each conditional. In this

step, the compiler simply chooses which updates to apply

and not how to implement them. Thus, the output is a pro-

gram in the Kernel IL with conditionals specified in the Den-

sity IL. As a reminder, the user can supply the MCMC sched-

ule, in which case the compiler will check that it can in-

deed generate the desired schedule and fail otherwise. When

a user does not supply a MCMC schedule, the compiler uses

a heuristic to accomplish this task. First, it determines which

variables it can perform Gibbs sampling with conjugacy re-

lations. For the remaining discrete variables, it will also ap-

ply Gibbs sampling by approximating the closed-form con-

ditional. For the remaining continuous variables, it will ap-

ply HMC sampling to take advantage of gradient informa-

tion.

4.3 Representing MCMC II: The Low++ IL

The Low++ IL expresses parallelism available in a MCMC

algorithm. After the compiler generates code in this IL, the

compiler only needs to reason at the level of an inference

algorithm—all aspects of the model are eliminated. Figure 6

summarizes the syntax for the Low++ IL. The language

is largely standard, so we highlight the aspects useful for

encoding MCMC.

First, the IL provides additional distributions operations

dop, including the log-likelihood ll, sampling samp, and

gradients gradi, where the integer i refers to the position of

MCMC update likelihood full-conditional gradient

MH X ✗ ✗

Gibbs ✗ X ✗

HMC X ✗ X

Reflective slice X ✗ X

Elliptical slice X ✗ ✗

Figure 7: A summary of base MCMC updates and the prim-

itives required to implement them.

the argument to take the gradient with respect to. At the level

of the Density IL, the distribution operation was implicitly

its density. For expressing inference algorithms, we may

need other operations on distributions such as sampling from

them.

Second, the IL contains a dedicated increment and as-

sign statement x += e. (We can also increment and store

to locations e[−→e ] += e.) We added this additional syntactic

category because many MCMC updates require increment-

ing some quantity. For example, we may need to count the

number of occurrences satisfying some predicate to compute

a conjugacy relation or accumulate derivative computations

after an application of the chain-rule. Because we hope to

generate parallel inference code, this separate syntactic cat-

egory indicates to the compiler that the increment and assign

must be done atomically.

Third, The ILs annotate loops with whether they can be

executed sequentially (Seq), in parallel (Par), or in parallel

given that all increment and assign operations are done atom-

ically (AtmPar). For instance, we can annotate a loop that

samples a collection of conditionally independent variables

in parallel (e.g., when implementing a conjugacy relation)

with Par. As we will see later when we describe AugurV2’s

implementation of gradients (Section 4.4), these computa-

tions will use the loop annotation AtmPar.

4.4 Primitive Support for Base MCMC Updates

The AugurV2 compiler currently supports user-supplied

MH proposals, Gibbs updates, HMC updates5, and (reflec-

tive and Elliptical) Slice updates. Fortunately, each base up-

date can be decomposed into yet further primitives, sum-

marized in Figure 7. The rest of the functionality can be

supported as library code—the primitives encapsulate the

parts of the MCMC algorithm that are specific to the full-

conditional. This helps us manage the complexity of the

compiler. These primitives include (1) likelihood evaluation,

(2) closed-form full-conditional derivation, and (3) gradient

evaluation. The compiler will implement these primitives in

the Low++ IL.

Likelihood evaluation It is straightforward to generate

Low++ code that reifies a likelihood computation from a

5 There is also a prototype of No-U-Turn sampling.
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density factorization. It is also straightforward to parallelize

these computations as a map-reduce.

Closed-form conditional derivation The compiler only

computes the conditionals of the model’s density factoriza-

tion up to a normalizing constant. To obtain a closed-form

solution for the conditional, the compiler needs to solve for

the normalizing constant, which requires solving an integral.

As this is not analytically possible in general, the AugurV2

compiler supports closed-form conditionals in two cases.

First, like Bugs and Augur, AugurV2 exploits conjugacy

relations. Recall that a conjugacy relation exists when the

form of the conditional distribution p(θ | x) takes on the

same functional form as p(θ). There is a well-known list of

conjugacy relations. Consequently, the AugurV2 compiler

supports conjugacy relations via table lookup. Computing a

conjugacy relation typically involves traversing the involved

variables and computing some simple statistic of the vari-

ables.

The compiler may fail to detect a conjugacy relation if

(1) the approximation of the conditional is imprecise or (2)

the compiler needs to perform mathematical rearrangements

beyond structural pattern matching. It would be interesting

to see if we can improve upon the latter situation by com-

bining AugurV2 with a computer algebra system (CAS) as

other systems have done (e.g., [18]) and leveraging the CAS

to solve the integral, but we leave this for future work.

Second, AugurV2 can also approximate the closed-form

conditional for a discrete variable as a finite sum, even if a

conjugacy relation does not exist. That is, it can generate

code that directly sums over the support of the discrete

variable up to some predetermined bound.

p(z = k | x) =
p(z = k) p(x | z = k)

∑

k′ p(z = k′) p(x | z = k′)

Gradient evaluation The compiler implements source-to-

source, reverse-mode automatic differentiation (AD) to sup-

port gradient evaluation of the model likelihood. For more

background, we refer the reader to the literature on AD

(e.g., [2]). Figure 8 summarizes the translation implemented

by the AugurV2 compiler, where the input program is as-

sumed to contain only simple expressions. The output is an

adjoint program, i.e., a program that computes the deriva-

tive. We highlight two interesting aspects of AD in the con-

text of AugurV2.

First, the AugurV2 compiler implements source-to-source

AD, in contrast with other systems (e.g., Stan [8]) that im-

plement AD by instrumenting the program. This choice was

largely motivated by the lack of complex control flow in the

AugurV2 modeling language, which is the primary difficulty

of implementing source-to-source AD. Here, the AugurV2

compiler leverages the semantics of parallel comprehensions

to optimize the gradient code. Observe that the translation re-

verses the order of evaluation (see the sequence translation).

In particular, this means that a sequential looping construct

needs a stack to save the order of evaluation. However, as

parallel comprehensions have order-independence seman-

tics, the stack can be optimized away. We also found that it

was easier to support the composition of different MCMC

algorithms by directly generating code that implements gra-

dients when needed, instead of designing the system runtime

to support the instrumentation required for AD. Lastly, this

choice makes it easier to support compilation to the GPU as

we do not need to write two runtimes, one for the CPU and

one for the GPU.

Second, for the purposes of parallelization, the compiler

generates atomic increments in the AD translation when ac-

cumulating gradient computations (e.g., see Figure 8a). The

presence of these atomic increments means that paralleliza-

tion is not straightforward. To illustrate the problem, con-

sider applying the AD transformation to the GMM model

conditional p(µ | z, y∗), which results in the (excerpted)

code:

grad_mu_k(K, N, ..., Sigma, mu, z, y) {

...

loop AtmPar (n <- 0 until N) {

t0 = z[n];

t1 = MvNormal(mu[t0], Sigma[t0], y[n]).grad2;

adj_mu[t0] += adj_ll * t1;

}

ret adj_mu[k];

}

When the number of data points N greatly exceeds the num-

ber of clusters K, launching N threads in parallel while exe-

cuting the increments atomically can lead to high contention,

and consequently, poor performance. Hence, the compiler

needs to parallelize loops marked AtmPar carefully to re-

duce contention in an atomic increment and assign (Sec-

tion 5.4).

5. Backend

The AugurV2 backend performs the last step of compila-

tion and generates native inference code. Except for the final

step where the compiler synthesizes a complete MCMC al-

gorithm and eliminates the Kernel IL, this step is largely sim-

ilar to a traditional compiler backend in terms of the trans-

formations it performs. For AugurV2, this includes (1) size-

inference to statically bound the amount of memory usage

an AugurV2 MCMC algorithm consumes and (2) reifying

parallelism. Towards this end, the compiler uses an IL called

the Low-- IL.

5.1 Representing MCMC III: The Low-- IL

The Low-- IL is structurally the same as the Low++ IL (Fig-

ure 5), except that programs must manage memory explic-

itly. However, details of how to reify parallelism are still left

abstract.
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(x, y) = ȳ += x̄

(x, dist(y1, . . . , yn)) = ȳ1 += x̄ ∗ dist(y1, . . . , yn).grad1

. . .

ȳn += x̄ ∗ dist(y1, . . . , yn).gradn

(x, y1[y2]) = ȳ1[y2] += x̄

(a) Selected adjoint expression translation. A variable notated

x̄ is the adjoint of variable x. It contains the result of the partial

derivative with respect to x.

pdist(−→e )(x) = (x, dist(−→e ))

fn1 fn2 = fn2; fn1

let x = e in fn = x = e; fn; (x, e)
∏

x←gen

fn = loop AtmPar (x← gen){fn}

[fn]x=e = if(x = e){fn}{0; }

(b) The adjoint density function translation. The absence of

complex control-flow in the Density IL simplifies the imple-

mentation.

Figure 8: The construction of an adjoint program for source-to-source, reverse-mode AD in AugurV2 from the Density IL to

the Low++ IL.

b ::= seqBlk {s} | parBlk lk x← gen {s}

| loopBlk x← gen {b}

| eacc = sumBlk e0 x← gen {s ; ret e}

Figure 9: The Blk IL exposes the different kinds of

parallelism, including data-parallel (parBlk), reduction

(sumBlk), and the absence of parallelism (seqBlk).

5.2 Size Inference

As a reminder, AugurV2 programs express fixed-structure

models. Consequently, we can bound the amount of memory

an inference algorithm uses and allocate it up front. More-

over, for GPU inference, it is necessary to determine how

much memory a MCMC algorithm will consume up front

because we cannot dynamically allocate memory while ex-

ecuting GPU code. To accomplish this, the compiler first

makes all sources of memory usage explicit. For instance,

primitives such as vector addition that produce a result that

requires allocation will be converted into a side-effecting

primitive that updates an explicitly allocated location. These

functional primitives made the initial lowering step from

model and query into algorithm tractable and can be re-

moved at this step. Next, the compiler performs size infer-

ence to determine how much memory to allocate. Currently,

the compiler does not support standard optimizations such

as destructive updates.

5.3 Representing Parallelism: The Blk IL

When AugurV2 is set to target the GPU, the compiler pro-

duces Cuda/C code from Low-- IL code. Here, the compiler

can finally leverage the loop annotations present in the infer-

ence code. As a reminder, the loops were annotated when the

compiler first generated a base MCMC update. At this point,

the compiler chooses how to use utilize the GPU. As with

size-inference and memory management, this step is also

similar to a more traditional code-generation step. Towards

this end, the compiler introduces an additional IL called the

Blk IL. The syntax is summarized in Figure 9.

The design of the IL is informed by the SIMD par-

allelism provided by a GPU. For example, the construct

parBlk lk x ← gen {s} indicates a parallel block of code,

where gen copies of the statement s (in the Low-- IL) can be

run in parallel according to the loop annotation lk. This cor-

responds to launching gen threads on the GPU. The syntax

eres = sumBlk e0 x← gen {s ; ret e} indicates a summa-

tion block, where the body s maps some computation across

gen and returns the expression e. The result is summed with

e0 as the initial value and is assigned to the expression in

eres. Hence, this corresponds to a GPU map-reduce. The

construct loopBlk x← gen {b} loops a block b. Thus, this

corresponds to launching gen parallelized computations en-

coded in b in sequence. The construct seqBlk {s} encodes

a sequential block of code consisting of a statement s. This

corresponds to the absence of parallelism.

5.4 Parallelizing Code

To parallelize the body of a declaration in the Low-- IL, the

compiler first translates it into the Blk IL. Every top-level

loop we encounter in the body is converted to a parallel

block with the same loop annotation. The remaining top-

level statements that are not nested within a loop are gen-

erated as a sequential block. Loop blocks and summation

blocks are not generated during the initial translation step,

but are generated as the result of additional transformations.

The current parallelization strategy is a proof-of-concept that

illustrates how to reify the parallelism specific to the base

MCMC updates the compiler generates and we expect that

there are many opportunities for improvement here. We sum-

marize some optimizations that we have found useful in the

context of the MCMC algorithms generated by AugurV2.
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Commuting loops As a reminder, AugurV2 compiles at

runtime so it has access to the sizes of the data and parame-

ters. It can use this information to commute IL blocks of the

form

parBlk Par (k <- 0 until K) {

loop Par (n <- 0 until N) {

...

}

}

when K ≪ N so that the code utilizes more GPU threads.

Inlining The compiler inlines primitive functions that are

implemented with loops. For example, the compiler can in-

line the sampling of a Dirichlet distribution, which samples

a vector of Gamma distributed variables and then normalizes

the vector (with normalize).

sample_dirichlet(alpha) {

loop Par (v <- 0 until V) {

x[v] = Gamma(alpha).samp;

}

normalize(x);

ret x;

}

Inlining expose additional sources of parallelism. For exam-

ple, if we inline the sampling of the Dirichlet distribution

sample dirichlet above in a ParBlk, then the loops may

be commuted.

Conversion to summation blocks Lastly, the compiler an-

alyzes parallel blocks marked atomic parallel to see which

should be converted to summation blocks. To illustrate this

more concretely, suppose we have the following code pro-

duced by AD:6

parBlk AtmPar (n <- 0 until N) {

adj_var += adj_ll * Normal(y[n], 0, var).grad3;

}

Parallelizing this code by launching N threads leads to high

contention in updating the variable adj var. Instead, the

compiler estimates the contention rate as the ratio of the

number of threads we are parallelizing with (i.e., N in this

example) compared to the number of locations the atomic

additions are accessing (i.e., 1 in this example). If the ratio

is high as it is in this example (N/1), then the compiler

converts it to a summation block.

adj_var = sumBlk adj_var (n <- 0 until N) {

t = adj_ll * Normal(y[n], 0, var).grad3;

ret t;

}

6 This code could arise from a model with density factorization

pExp(σ
2) pN (x∗

n
| 0, σ2) where pExp(σ

2) is an Exponential distribution

and pN (x∗
n

| 0, σ2) is a Normal distribution with variance σ
2. Impor-

tantly, any model where there is a higher-level parameter (e.g., the variance

parameter) that controls the shape of lower-level distributions (e.g., the like-

lihood), will result in gradient code of this form.

Importantly, the compiler is invoked at runtime so the sym-

bolic values can be resolved.

The compiler uses the following basic heuristic to opti-

mize a block of code. First, it inlines primitive function as

described above. If inlining code results in a loop being com-

muted or a conversion to a summation block, then it stops

and returns that block of code. Otherwise, it does not inline

and returns the block as is. We have not investigated other

optimizations, different orderings of the optimizations, or

more generally, a cost-model to guide optimization. As an

example of an area for improvement, consider the following

piece of code, which the AugurV2 compiler will currently

fail to parallelize well. This code could result from inlining

the log-likelihood computation for a Dirichlet distribution

(ignoring the normalizing constant) evaluated at the vector

x[k] for each k with concentration parameter alpha.

...

parBlk AtmPar (k <- 0 until K) {

tmp_ll = 0;

loop AtmPar (v <- 0 until V) {

tmp_ll += (alpha[v] - 1) * log(x[k][v]);

}

ll += tmp_ll;

}

...

In this example, the compiler would map-reduce over the

outer-loop, which would be inefficient if K ≪ V (e.g., con-

sider a model such as LDA that has K topics and V words

in the vocabulary). By inspection, a better strategy would be

to map-reduce over both loops (K×V elements) as addition

is associative.

Once the compiler has translated the body into the Blk

IL and performed the optimizations above, it will generate

Cuda/C code. The Blk IL maps in a straightforward manner

onto Cuda/C code. In general, such a compilation strategy

will generate multiple GPU kernels for a single Low-- dec-

laration.

5.5 Synthesizing a Complete MCMC Algorithm

In this step, the compiler eliminates the Kernel IL and syn-

thesize a complete MCMC algorithm. More concretely, the

compiler generates code to compute the acceptance ratio

(AR) associated with each base MCMC update.

Recall that a base MCMC update targeting the distribu-

tion p(x) can be thought of as a MH algorithm with a pro-

posal q(x→ x′) of a specific form. To ensure that the distri-

bution p(x) is sampled from appropriately, the proposals are

taken (or accepted) with probability

α(x, x′) = min

(

1,
p(x′)q(x→ x′)

p(x)q(x′ → x)

)

,

where α(x, x′) is known as the AR. If the proposal is not

taken, it is said to be rejected. Some base MCMC updates

such as Gibbs updates are always accepted, i.e., have AR
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α(x, x′) = 1 for any x and x′. Thus, the acceptance ra-

tio does not need to be computed for such updates. Other

MCMC updates such as HMC updates require the computa-

tion of the AR. The compiler generates code that computes

the AR after every base update that requires it. Because such

base updates can be rejected, the compiler maintains two

copies of the MCMC state space, one for the current state

and one for the proposal state, and enforces the invariant that

the two are equivalent after the execution of a base MCMC

update. The invariant ensures that the execution of a base

MCMC update always uses the most current state.

6. System Implementation

In this section, we summarize AugurV2’s system implemen-

tation, which includes the compiler, the user interface, and

the runtime library.

6.1 Compiler Implementation

The AugurV2 compiler is written in Haskell. The frontend is

roughly 950 lines of Haskell code, the middle-end is roughly

1860 lines, and the backend is roughly 3420 lines. The entire

compiler is roughly 9000 lines, which includes syntax, pretty

printing, and type checking. We found the backend to be

the most tedious to write, particularly the details of memory

transfer between the Python interface and Cuda/C.

6.2 Runtime Library

The AugurV2 runtime library is written in Cuda/C. It pro-

vides functionality for primitive functions, primitive distri-

butions, additional MCMC library code, and vector opera-

tions. The libraries are written for both CPU and GPU infer-

ence. We believe there is room for improvement, particularly

in the GPU inference libraries. For example, in the GMM

example, we need to perform the same matrix operation on

many small matrices in parallel. In contrast, the typical GPU

use case is to perform one matrix operation on one large ma-

trix.

The runtime representation of AugurV2 vectors are flat-

tened. That is, AugurV2 supports vectors of vectors (i.e.,

ragged arrays) in its surface syntax, but the eventual repre-

sentation of the data will be contained in a flattened, con-

tiguous region of memory. This enables us to use a GPU

efficiently when we want to map an operation across all

the data in a vector of vectors, without following a pointer-

directed structure. For this reason, the runtime representation

of vectors of vectors pairs a separate pointer-directed struc-

ture with a flattened contiguous array holding the actual data.

The former provides random access capabilities, while the

latter enables an efficient mapping operation across the data

structure. The flattened representation is also beneficial for

CPU inference algorithms because of the increased locality.

7. Evaluation

In this section, we evaluate AugurV2’s design and compare

against Jags (a variant of Bugs) and Stan, systems with

similar modeling languages.

7.1 Extensibility

As MCMC methods are improved, it is important to design

systems that can be extended to incorporate the latest ad-

vances. In this part of the evaluation, we comment on the ex-

tensibility of AugurV2’s design in supporting base MCMC

updates.

To support a new base update, we need to (1) add a node

to the Kernel IL AST and modify the parser, (2) extend

common Kernel IL operations to support the new node, and

(3) implement the Cuda/C code for the base update against

the AugurV2 runtime. From experience, we have found the

first two items to be simple, provided that the base update

uses the MCMC primitives already implemented. For in-

stance, once we have an implementation of AD, we can eas-

ily support both reflective Slice sampling and HMC using

the same AD transformation. In contrast, supporting Gibbs

updates were difficult because we need to implement a sepa-

rate code-generator for each conjugacy relation. Fortunately,

there is a well-known list of conjugacy relations so this can

be done once. The third item is between 0 lines of C code (for

a Gibbs update) to 30 lines of C code ( e.g., an implementa-

tion of Leapfrog integration for the HMC update) depending

on the complexity of the base update. We have found that it

often takes on the order of days to add a new base update,

where most of the time is spent understanding the statistics

and implementing the C code.

7.2 Performance

In this part of the evaluation, we compare AugurV2 against

Jags and Stan, concentrating on how design choices made

in the AugurV2 system—(1) compositional MCMC infer-

ence, (2) compilation, and (3) parallelism—compare against

those made in Jags and Stan. We consider three probabilistic

models commonly used to assess the performance of PPLs

(e.g., see the Stan user manual [22]): (1) Hierarchical Lo-

gistic Regression (HLR), (2) Hierarchical Gaussian Mixture

Model (HGMM), and (3) Latent Dirichlet Allocation (LDA).

We ran all the experiments on an Ubuntu 14.04 desktop with

a Core-i7 CPU and Nvidia Titan Black GPU.

Models The generative model for a HLR is summarized

below. It is a model that can be used to construct classifiers.

σ2 ∼ Exponential(λ)

b ∼ Normal(0, σ2)

θk ∼ Normal(0, σ2)

yn ∼ Bernoulli(sigmoid(xn · θk + b))

The generative model for a HGMM is summarized be-

low. It is a model that clusters points on D-dimensional Eu-
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clidean space.

π ∼ Dirichlet(α)

µk ∼ Normal(µ0,Σ0)

Σk ∼ InvWishart(ν,Ψ)

zn ∼ Categorical(π)

yn ∼ Normal(µzn ,Σzn)

The generative model for LDA is summarized below. It

is a model that can be used to infer topics from a corpus of

documents.

θd ∼ Dirichlet(α)

φk ∼ Dirichlet(β)

zdj ∼ Categorical(θd)

wdj ∼ Categorical(φzdj )

Compositional MCMC To assess the impact of generating

compositional MCMC algorithms, we use the HLR model

and the HGMM model. The HLR model contains only con-

tinuous parameters. Hence, a system such as Stan, which is

specifically designed for gradient-based MCMC algorithms,

should perform well. The HGMM model is fully-conjugate.

Hence, a system such as Jags, which is specifically designed

for Gibbs sampling, should perform well.

For the HLR model, we visually verified the trace plots

(i.e., a plot of the values of the parameter from one sample to

the next) of each system. On the German Credit dataset [13],

we found that AugurV2 configured to generate a CPU HMC

sampler with manually picked parameters to be roughly 25
percent slower than Stan set to use the same HMC sampling

algorithm in generating 1000 samples (with no thinning).

It would be interesting to investigate more the differences

in AugurV2’s implementation of AD and Stan’s. Jags had

the poorest performance as it defaults to adaptive rejection

sampling. It takes roughly 35 seconds for Stan to compile

the model (due to the extensive use of C++ templates in its

implementation of AD). AugurV2 compiles almost instanta-

neously when generating CPU code, while it takes roughly 8
seconds to generate GPU code. The difference between CPU

and GPU compile times is due to the difference in speed

between Clang and Nvcc (the GPU compiler we use). Al-

though fast compilation times are not an issue in our setting

where we just need to compile the model (and query) once,

this may become more of an issue in structure learning [19].

Figure 10 contains plots of the log-predictive proba-

bility versus training time for a 2D-HGMM model with

1000 synthetically-generated data points and 3 clusters. A

log-predictive probability plot can be seen as a proxy for

learning–as training time increases, the algorithm should be

able to make better predictions. We configured AugurV2

to generate 3 different MCMC samplers corresponding to

sampling the cluster locations with Elliptical Slice updates,
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Figure 10: The log-predictive probability of a HGMM when

using the samplers generated by AugurV2, Jags, and Stan.

We use AugurV2 to generate 3 different MCMC inference

algorithms. We set AugurV2 and Jags to draw 150 samples

with no burn-in and no thinning. We set Stan to draw 100
samples with an initial tuning period of 50 samples and no

thinning.

(k, d, n) AugurV2 Jags Speedup

(3, 2, 1000) 0.2 1.1 ∼ 5.5x
(3, 2, 10000) 1.4 17.4 ∼ 12.4x
(10, 2, 10000) 3.7 51.5 ∼ 13.9x
(3, 10, 10000) 15.6 93.0 ∼ 5.9x
(10, 10, 10000) 17.8 301.9 ∼ 16.9x

Figure 11: Approximate timing results comparing the per-

formance of AugurV2’s compiled Gibbs sampler versus

Jag’s Gibbs sampler on a HGMM with varying clusters (k),

dimensions (d), and data points (n).

Gibbs updates, and HMC updates. The plot shows that ev-

ery system converges to roughly the same log-predictive

probability, the difference being the amount of time it takes.

For instance, Jags and AugurV2’s Gibbs sampler have bet-

ter computational performance because they can leverage

the conjugacy relation, whereas Stan uses gradient-based

MCMC.

Compilation Figure 11 summarizes the timing results to

generate 150 samples for a HGMM on a synthetically gen-

erated dataset for a varying number of clusters, dimensions,

and data points. We set AugurV2 to generate a Gibbs update

for all the variables and compare against Jags’ Gibbs sam-

pler so that both are running the same high-level inference

algorithm. The difference is that Jags reifies the Bayesian

network structure and performs Gibbs sampling on the graph

structure, whereas AugurV2 directly generates code that per-

forms Gibbs sampling using symbolically computed condi-
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Dataset-Topics CPU (sec.) GPU (sec.) Speedup

Kos-50 159 60 ∼ 2.7x
Kos-100 265 73 ∼ 3.6x
Kos-150 373 82 ∼ 4.6x
Nips-50 504 161 ∼ 3.1x

Nips-100 880 168 ∼ 5.2x
Nips-150 1354 235 ∼ 5.8x

Figure 12: Approximate timing results comparing the per-

formance of AugurV2’s CPU Gibbs inference against GPU

Gibbs inference for LDA. The Kos dataset [13] has a vo-

cabulary size of 6906 and contains roughly 460k words. The

Nips dataset [13] has a vocabulary size of 12419 and roughly

1.9 million words.

tionals. The experiments show that AugurV2’s approach out-

performs Jags’ approach. We also compared to the perfor-

mance of Stan as well as checked the log-predictive proba-

bilities for all three systems, but didn’t include timing results

for Stan because they aren’t particularly meaningful. For in-

stance, we applied Stan’s No-U-Turn sampler to the largest

model with 10 clusters in 10 dimensions, for which it takes

approximately 19 hours to draw 150 samples. Notably, Stan

does not natively support discrete distributions so the user

must write the model to marginalize out all discrete vari-

ables, which increases the complexity of computing gradi-

ents. This highlights the importance of being able to support

compositional MCMC algorithms.

Parallelism Jags and Stan support parallel MCMC by

running multiple copies of a chain in parallel. In contrast,

AugurV2 supports parallel MCMC by parallelizing the com-

putations within a single chain. As these methods are not

comparable, we will focus on AugurV2’s GPU inference ca-

pabilities. For these experiments, we will use all three mod-

els. We found that GPU inference can improve scalability of

inference, but it is highly model-dependent.

For example, when we fit the HLR to the German Credit

dataset using AugurV2’s GPU HMC sampler, the computa-

tional performance was roughly an order of magnitude worse

compared to AugurV2’s CPU HMC sampler. This can be at-

tributed to the small dataset size (roughly 1000 points) and

the low dimensionality of the parameter space (26 parame-

ters). When we apply the GPU HMC sampler to the Adult

Income dataset [13], which has roughly 50000 observations

and 14 parameters, the gradients were parallelized differ-

ently due to the summation block optimization—it is more

efficient to run 14 map-reduces over 50000 elements as op-

posed to launching 50000 threads all contending to incre-

ment 14 locations.

In contrast to a model such as a HLR, models such as

HGMM and LDA have much higher dimensional spaces. In-

deed, the number of latent variables scales with the number

of data points. In these cases, GPU inference was much

more effective. Figure 12 summarizes the (approximate)

timing results for AugurV2’s performance on LDA across

a variety of datasets, comparing its CPU Gibbs performance

against its GPU Gibbs performance. We also checked the

log-predictive probabilities to make sure that they were

roughly the same for the CPU and GPU samplers. The gen-

eral trend is that the GPU provides more benefit on larger

datasets, with larger vocabulary sizes, and with more topics.

We have also tried this with the HGMM and found the same

general trend. We could not get Jags or Stan to scale to LDA,

even for the smallest dataset.

8. Related Work

The design of AugurV2 builds upon a rich body of prior

work on PPLs. In this section, we compare AugurV2’s de-

sign with related PPLs, using the (model, query, inference)

tuple (i.e., the probabilistic modeling and inference tuple) as

a guide.

To begin, we summarize the different kinds of modeling

languages proposed for expressing models. At a high-level,

modeling languages either focus on (1) expressing well-

known probabilistic modeling abstractions such as Bayesian

networks [8, 23] as in AugurV2 or (2) are embedded into

general-purpose programming languages [11, 20, 21, 28,

29]. Within both categories, there are variations with how

models are expressed. For example, in the first category, the

Stan [8] language enables users to specify a model by both

imperatively updating its (log) density as well as writing the

generative process. Bugs [23] provides an imperative lan-

guage for specifying the generative process. For comparison,

AugurV2 provides a first-order functional language for spec-

ifying the generative process, which simplifies the analysis

a compiler performs. The Factorie [15] language expresses

Factor graphs, and hence, does not necessarily express gen-

erative processes. The second category of languages provide

richer modeling languages.

There are also a multitude of approaches to what queries

and inference algorithms are supported. AugurV2 takes a

sampling approach to posterior inference as with many

other systems [20, 28, 29]. However, some systems such

as Stan [8] and Infer.net [16] support multiple kinds of in-

ference strategies, including Automatic Differentiable Vari-

ational Inference (AVDI) and Expectation Propagation re-

spectively. Hence, these systems provide a fixed number of

possible inference strategies. Hakaru [18] and Psi [10] pro-

vide capabilities for exact inference via a symbolic approach

to integration.

The Blaise [5] system provides a domain-specific graph-

ical language for expressing both models and MCMC algo-

rithms. Hence, such a system provides a more expressive

language for encoding inference algorithms beyond choos-

ing from a preselected and fixed number of strategies. As

we mentioned in the introduction, the Kernel IL used by

AugurV2 is closely related to the Blaise language. In par-

ticular, it should be possible to translate the Kernel IL in-
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stantiated with the Density IL to a Blaise graph. We use the

Kernel IL for the purposes of compilation, whereas in Blaise

the language is interpreted. It would be an interesting direc-

tion of future work to see if the subset of the Blaise language

related to inference can also be used for the purposes of com-

pilation.

Edward [26] and Venture [14] also explore increasing the

expressivity of different query and inference languages. Ed-

ward is built on top of TensorFlow [1], and hence, provides

gradient-based inference strategies such as HMC and AVDI.

Notably, the TensorFlow system efficiently supports the

computation of gradients for an input computational graph

(e.g., the computational graph of the log-likelihood calcula-

tion for a probabilistic model). Consequently, Edward lever-

ages the benefits of TensorFlow. It would be interesting di-

rection for future work to see how much of TensorFlow’s

infrastructure for AD can be used in AugurV2 as done in

Edward. However, note that AugurV2 provides higher-level

functionality than TensorFlow. For example, AugurV2 can

generate non-gradient-based MCMC algorithms (e.g., Gibbs

samplers) as well as compose gradient-based MCMC with

non-gradient-based MCMC. Venture [14] provides an infer-

ence language that is closer to a general-purpose program-

ming language, and hence, explores the more expressive

regime of the design space for inference algorithms.

In addition to exploring various points of the (model,

query, inference) tuple space, many PPLs have also pro-

posed interesting implementation decisions that are related

to AugurV2’s. For example, the Hierarchical Bayes Com-

piler (HBC) [9] explores the compilation of Gibbs sam-

plers to C code. In this work and our previous work on Au-

gur, we support compilation of Gibbs samplers to the GPU.

Swift [29] uses a compiler pass to optimize how conditional

independence relationships are tracked at runtime for a mod-

eling language that can express dynamic relationships. In

contrast, AugurV2 provides a simpler modeling language

that expresses static relationships, and hence, statically ap-

proximates these relationships. Bhat et al. [3] give a proof of

correctness for a compiler that transforms a term in a first-

order modeling language into a density. This language sub-

sumes AugurV2’s (e.g., AugurV2 does not provide branch-

ing constructs) and can be seen as justifying the implemen-

tation of the AugurV2 frontend, which translates a term in

the modeling language into its density factorization.

9. Conclusion

In summary, we present a sequence of ILs and the steps

of compilation that can be used to convert a description of

a fixed-structure, parametric model and a query for poste-

rior samples into a composable MCMC inference algorithm.

These ILs were designed to support (1) the static analysis

of models to derive facts useful for inference such as the

model decomposition, (2) generating multiple kinds of in-

ference algorithms and their composition, and (3) CPU and

GPU compilation. We show that this compilation scheme

can scale automatic inference to probabilistic models with

many latent variables (e.g., LDA). We follow the traditional

strategy of using ILs to cleanly separate out the requirements

of each phase of compilation. It would be an interesting to

see what aspects of AugurV2’s ILs and compilation strategy

could be reused in the context of a larger infrastructure for

compiling PPLs.
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[3] BHAT, S., BORGSTRÖM, J., GORDON, A. D., AND RUSSO,

C. Deriving Probability Density Functions from Probabilistic

Functional Programs. In Proceedings of the 19th International

Conference on Tools and Algorithms for the Construction and

Analysis of Systems (2013), pp. 508–522.

[4] BISHOP, C. M., Ed. Pattern Recognition and Machine Learn-

ing. Springer, 2006.

[5] BONAWITZ, K. A. Composable Probabilistic Inference with

Blaise. PhD thesis, Massachusetts Institute of Technology,

2008.
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