Evaluating Value-Graph Translation Validation for LLVM

Jean-Baptiste Tristan

Paul Govereau

Greg Morrisett

Harvard University
{tristan,govereau,greg}@seas.harvard.edu

Abstract

Translation validators are static analyzers that attempt to verify that
program transformations preserve semantics. Normalizing trans-
lation validators do so by trying to match the value-graphs of an
original function and its transformed counterpart. In this paper, we
present the design of such a validator for LLVM’s intra-procedural
optimizations, a design that does not require any instrumentation of
the optimizer, nor any rewriting of the source code to compile, and
needs to run only once to validate a pipeline of optimizations. We
present the results of our preliminary experiments on a set of bench-
marks that include GCC, a perl interpreter, SQLite3, and other C
programs.

Categories and Subject Descriptors F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages - Al-
gebraic approaches to semantics; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about Pro-
grams - Mechanical Verification; F.3.3 [Logics and Meanings of
Programs]: Studies of Program Constructs - Program and recursion
schemes

General Terms Algorithms, languages, reliability, theory, verifi-
cation

Keywords Translation validation, symbolic evaluation, LLVM,
optimization

1. Introduction

Translation validation is a static analysis that, given two programs,
tries to verify that they have the same semantics [13]. It can be used
to ensure that program transformations do not introduce semantic
discrepancies, or to improve testing and debugging. Previous exper-
iments have successfully applied a range of translation validation
techniques to a variety of real-world compilers. Necula [11] exper-
imented on GCC 2.7; Zuck et al. [4] experimented on the Tru64
compiler; Rival [14] experimented on unoptimized GCC 3.0; and
Kanade et al. [8] experimented on GCC 4.

Given all these results, can we effectively validate a produc-
tion optimizer? For a production optimizer, we chose LLVM. To be
effective, we believe our validator must satisfy the following crite-
ria. First, we do not want to instrument the optimizer. LLVM has
a large collection of program transformations that are updated and
improved at a frantic pace. To be effective, we want to treat the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’11, June4-8,2011, San Jose, California, USA.

Copyright © 2011 ACM 978-1-4503-0663-8/11/06. ..$10.00

optimizer as a “black box”. Second, we do not want to modify the
source code of the input programs. This means that we handle the
output of the optimizer when run on the input C programs “as is.”
Third, we want to run only one pass of validation for the whole
optimization pipeline. This is important for efficiency, and also be-
cause the boundaries between different optimizations are not al-
ways firm. Finally, it is crucial that the validator can scale to large
functions. The experiments of Kanade et al. are the most impres-
sive of all, with an exceptionally low rate of false alarms (note the
validator requires heavy instrumentation of the compiler). However
the authors admit that their approach does not scale beyond a few
hundred instructions. In our experiments, we routinely have to deal
with functions having several thousand instructions.

The most important issue is the instrumentation. To our knowl-
edge, two previous works have proposed solutions that do not re-
quire instrumentation of the optimizer. Necula evaluated the ef-
fectiveness of a translation validator for GCC 2.7 with common-
subexpression elimination, register allocation, scheduling, and
loop inversion. The validator is simulation-based: it verifies that
a simulation-relation holds between the two programs. Since the
compiler is not instrumented, this simulation relation is inferred
by collecting constraints. The experimental validation shows that
this approach scales, as the validator handles the compilation of
programs such as GCC or Linux. However, adding other optimiza-
tions such as loop-unswitch or loop-deletion is likely to break the
collection of constraints.

On the other hand, Tate et al. [16] recently proposed a system
for translation validation. They compute a value-graph for an in-
put function and its optimized counterpart. They then augment the
terms of the graphs by adding equivalent terms through a process
known as equality saturation, resulting in a data structure similar
to the E-graphs of congruence closure. If, after saturation, the two
graphs are the same, they can safely conclude that the two pro-
grams they represent are equivalent. However, equality saturation
was originally designed for other purposes, namely the search for
better optimizations. For translation validation, it is unnecessary to
saturate the value-graph, and generally more efficient and scalable
to simply normalize the graph by picking an orientation to the equa-
tions that agrees with what a typical compiler will do (e.g. 1 + 1
is replaced by 2). Their preliminary experimental evaluation for the
Soot optimizer on the JVM shows that the approach is effective and
can lead to an acceptable rate of false alarms. However, it is unclear
how well this approach would work for the more challenging opti-
mizations available in LLVM, such as global-value-numbering with
alias analysis or sparse-conditional constant propagation.

We believe that a normalizing value-graph translation validator
would have both the simplicity of the saturation validator proposed
by Tate et al., and the scalability of Necula’s constraint-based ap-
proach. In this paper we set out to evaluate how well such a de-
sign works. We therefore present the design and implementation
of such a validator along with experimental results for a number
of benchmarks including SQLite [2] and programs drawn from

spec marks [5], including GCC and a perl interpreter. The opti-
mizations we consider include global-value numbering with alias
analysis, sparse-conditional constant propagation, aggressive dead-
code elimination, loop invariant code motion, loop unswitching,
loop deletion, instruction combining, and dead-store elimination.
We have also experimented, on a smaller suite of hand-written pro-
grams and optimizations, that our tool could handle without further
modification various flavors of scheduling (list, trace, etc.) and loop
fusion and fission.

While Tate et al. tried a saturation approach on JVM code and
found the approach to be effective, we consider here a normaliza-
tion approach in the context of C code. C code is challenging to
validate because of the lack of strong typing and the relatively low-
level nature of the code when compared to the JVM. However, our
results show that a normalizing value-graph translation validator
can effectively validate the most challenging intra-procedural opti-
mizations of the LLVM compiler. Another significant contribution
of our work is that we provide a detailed analysis of the effective-
ness of the validator with respect to the different optimizations. Fi-
nally, we discuss a number of more complicated approaches that we
tried but ultimately found less successful than our relatively simple
architecture.

The remainder of the paper is organized as follows. Section 2
presents the design of our tool. Section 3 details the construction
of the value-graph using examples. Section 4 reviews the normal-
ization rules that we use and addresses their effectiveness through
examples. Section 5 presents the results of our experiments. We
discuss related work in Section 6 and conclude in Section 7.

2. Normalizing translation validation

Our validation tool is called LLVM-MD. At a high-level, LLVM-
MD is an optimizer: it takes as input an LLVM assembly file and
outputs an LLVM assembly file. The difference between our tool
and the usual LLVM optimizer is that our tool certifies that the
semantics of the program is preserved. LLVM-MD has two com-
ponents, the usual off-the-shelf LLVM optimizer, and a translation
validator. The validator takes two inputs: the assembly code of a
function before and after it has been transformed by the optimizer.
The validator outputs a boolean: frue if it can prove the assem-
bly codes have the same semantics, and false otherwise. Assuming
the correctness of our validator, a semantics-preserving LLVM op-
timizer can be constructed as follows (opt is the command-line
LLVM optimizer, validate is our translation validator):

function llvm-md(var input) {
output = opt -options input
for each function f in input {
extract f from input as fi and output as fo
if (!validate fi fo) {
replace fo by fi in output
X
}
return output

}

For now, our validator works on each function independently, hence
the limitation to intra-procedural optimizations. We believe that
standard techniques can be used to validate programs in the pres-
ence of function inlining, but have not yet implemented these.
Rather, we concentrate on the workhorse intra-procedural opti-
mizations of LLVM.

At a high level, our tool works as follows. First, it “compiles”
each of the two functions into a value-graph that represents the data
dependencies of the functions. Such a value-graph can be thought
of as a dataflow program, or as a generalization of the result of sym-
bolic evaluation. Then, each graph is normalized by rewriting using

rules that mirror the rewritings that may be applied by the off-the-
shelf optimizer. For instance, it will rewrite the 3-node sub-graph
representing the expression 2+ 3 into a single node representing the
value 5, as this corresponds to constant folding. Finally, we com-
pare the resulting value-graphs. If they are syntactically equivalent,
the validator returns true. To make comparison efficient, the value-
graphs are hash-consed (from now on, we will say “reduced”). In
addition, we construct a single graph for both functions to allow
sharing between the two (conceptually distinct) graphs. Therefore,
in the best case—when semantics has been preserved —the com-
parison of the two functions has complexity O(1). The best-case
complexity is important because we expect most optimizations to
be semantics-preserving.

The LLVM-MD validation process is depicted in figure 1. First,
each function is converted into Monadic Gated SSA form [6, 10,
18]. The goal of this representation is to make the assembly in-
structions referentially transparent: all of the information required
to compute the value of an instruction is contained within the in-
struction. More importantly, referential transparency allows us to
substitute sub-graphs with equivalent sub-graphs without worrying
about computational effects. Computing Monadic Gated SSA form
is done in two steps:

1. Make side-effects explicit in the syntax by interpreting assem-
bly instructions as monadic commands. For example, a 1load
instruction will have a extra parameter representing the mem-
ory state.

2. Compute Gated SSA form, which extends ¢-nodes with con-
ditions, insert p-nodes at loop headers, and n-nodes at loop
exits[18].

Once we have the Monadic Gated SSA form, we compute a shared
value-graph by replacing each variable with its definition, being
careful to maximize sharing within the graph. Finally, we apply
normalization rules and maximize sharing until the value of the
two functions merge into a single node, or we cannot perform any
more normalization.

It is important to note that the precision of the semantics-
preservation property depends on the precision of the monadic
form. If the monadic representation does not model arithmetic over-
flow or exceptions, then a successful validation does not guarantee
anything about those effects. At present, we model memory state,
including the local stack frame and the heap. We do not model
runtime errors or non-termination, although our approach can be
extended to include them. Hence, a successful run of our validator
implies that if the input function terminates and does not produce
a runtime error, then the output function has the same semantics.
Our tool does not yet offer formal guarantees for non-terminating
or semantically undefined programs.

3. Validation by Example
3.1 Basic Blocks

We begin by explaining how the validation process works for basic
blocks. Considering basic blocks is interesting because it allows us
to focus on the monadic representation and the construction of the
value-graph, leaving for later the tricky problem of placing gates in
¢- and n-nodes.

Our validator uses LLVM assembly language as input. LLVM is
a portable SSA-form assembly language with an infinite number of
registers. Because we start with SSA-form, producing the value-
graph consists of replacing variables by their definitions while
maximizing sharing among graph nodes. For example, consider the

Monadic
Gated SSA

Original
LLVM file

+

Hash-consed
symbolic analysis

Normalization

>

Monadic
Gated SSA

Optimized
LLVM file

| query
1

Are the state’s
pointers for both
LLVM files equal?

Figure 1: LLVM M.D. from a bird’s eye view

following basic block, B1:
Bl: z1=3+3
T2 = a*T1
r3 = T2+ T2
and its optimized counterpart, B2:
B2: y1=ax6
Y2 =y1 << 1

Replacing variables z1, x2, and y1 by their definition, we obtain
the value-graph presented below. The dashed arrows are not part
of the value graph, they are only meant to point out which parts of
the graph correspond to which program variables. Note that both
blocks have been represented within one value graph, and the node
for the variable a has been shared.

z3

' - Y2

-

+ 4

C > /<<\

/\/\

()

3

Suppose that we want to show that the variables z3 and y2 will
hold the same value. Once we have the shared value graph in hand,
we simply need to check if 3 and y2 are represented by subgraphs
rooted at the same graph node. In the value graph above, x3 and y-
are not represented by the same subgraph, so we cannot conclude
they are equivalent. However, we can now apply normalization
rules to the graph. First, we can apply a constant folding rule to
reduce the subgraph 3 + 3 to a single node 6. The resulting graph
is shown below (we have maximized sharing in the graph).

T3 _ _Y2

N -

\l f

NV
/

/
\

‘We have managed to make the value graph smaller, but we still can-
not conclude that the two variables are equivalent. So, we continue
to normalize the graph. A second rewrite rule allows us to replace
z + z with x < 1 for any . In our setting, this rule is only appro-
priate if the optimizer would prefer the shift instruction to addition
(which LLVM does). After replacing addition with left shift, and
maximizing sharing, 3 and y2 point to the same node and we can
conclude that the two blocks are equivalent.

Side Effects. The translation we have described up to this point
would not be correct in the presence of side effects. Consider the
following basic block.

p1 = alloc 1
p2 = alloc 1
store x,p1
store vy, p2
z = load p1

If we naively apply our translation, then the graph corresponding
to z would be: z — load (alloc 1), which does not capture the
complete computation for register z. In order to make sure that we
do not lose track of side effects, we use abstract state variables to
capture the dependencies between instructions. A simple transla-
tion gives the following sequence of instructions for this block:

p1,m1 = alloc 1, mo

p2,m2 = alloc 1, m1
mg = store x,pi1,ma2
mgq = store y,p2, m3

z,ms = load p1,ma

Here, the current memory state is represented by the m registers.
Each instruction requires and produces a memory register in ad-
dition to its usual parameters. This extra register enforces a depen-
dency between, for instance, the 1oad instruction and the preceding
store instructions. This translation is the same as we would get if
we interpreted the assembly instructions as a sequence of monadic
commands in a simple state monad[10]. Using these “monadic” in-
structions, we can apply our transformation and produce a value
graph that captures all of the relevant information for each register.

The rewriting rules in our system are able to take into account
aliasing information to relax the strict ordering of instructions im-
posed by the monadic transformation. In our setting (LLVM), we
know that pointers returned by alloc never alias with each other.

Using this information, we are able to replace m4 with m3 in the
load instruction for z. Then, because we have a 1oad from a mem-
ory consisting of a store to the same pointer, we can simplify the
load tox.

Using the state variables, we can validate that a function not
only computes the same value as another function, but also affects
the heap in the same way. The same technique can be applied to
different kinds of side effects, such as arithmetic overflow, division
by zero, and non-termination. Thus far we have only modeled
memory side-effects in our implementation. Hence, we only prove
semantics preservation for terminating programs that do not raise
runtime errors. However, our structure allows us to easily extend
our implementation to a more accurate model, though doing so may
make it harder to validate optimizations.

3.2 Extended Basic Blocks

These ideas can be generalized to extended basic blocks as long
as ¢-nodes are referentially transparent. We ensure this through
the use of gated ¢-nodes. Consider the following program, which
uses a normal ¢-node as you would find in an SSA-form assembly
program.

entry: c=a<b
cbr ¢, true, false

true : T1 = To + Xo (True branch)
br join

false: x2=x0*xo (False branch)
br join

join : x3 = ¢(x1,x2) (Join point)

Rewriting these instructions as is would not be correct. For in-
stance, replacing the condition a < b by a > b would result
in the same value-graph, and we could not distinguish these two
different programs. However, if the ¢-node is extended to include
the conditions for taking each branch, then we can distinguish the
two programs. In our example, the last instruction would become
x3 = ¢(b, z1,x2), which means z3 is z1 if b is true, and z2 other-
wise.

In order to handle real C programs, the actual syntax of ¢-nodes
has to be a bit more complex. In general, a ¢-node is composed of a
set of possible branches, one for each control-flow edge that enters
the ¢-node. Each branch has a set of conditions, all of which must
be true for the branch to be taken.'

Cl1...Cln — V1

Ck1 - ..Ckm — Uk

Given this more general syntax, the notation ¢(c, z,y) is simply
shorthand for ¢(c — z,!lc — y).

Gated ¢ nodes come along with a set of normalization rules that
we present in the next section. When generating gated ¢-nodes,
it is important that the conditions for each branch are mutually
exclusive with the other branches. This way, we are free to apply
normalization rules to ¢-nodes (such as reordering conditions and
branches) without worrying about changing the semantics.

It is also worth noting that if the values coming from various
paths are equivalent, then they will be shared in the value graph.
This makes it possible to validate optimizations based on global-

! p-nodes with several branches and many conditions are very common in C
programs. For example, an if-statement with a condition that uses short-cut
boolean operators, can produce complex ¢-nodes.

value numbering that is aware of equivalences between definitions
from distinct paths.

3.3 Loops

In order to generalize our technique to loops, we must come up
with a way to place gates within looping control flow (including
breaks, continues, and returns from within a loop). Also, we need a
way to represent values constructed within loops in a referentially
transparent way. Happily, Gated SSA form is ideally suited to our
purpose.

Gated SSA uses two constructs to represent loops in a referen-
tially transparent fashion. The first, p, is used to define variables
that are modified within a loop. Each p is placed at a loop header
and holds the initial value of the variable on entry to the loop and a
value for successive iterations. The p-node is equivalent to a non-
gated ¢ node from classical SSA. The second, 7, is used to refer
to loop-defined variables from outside their defining loops. The n-
node carries the variable being referred to along with the condition
required to reach the 7 from the variable definition.

Figure 2a shows a simple while loop in SSA form. The Gated
SSA form of the same loop is shown in figure 2b. The ¢-nodes in
the loop header have been replaced with p-nodes, and the access to
the x,, register from outside to loop is transformed into an 7-node
that carries the condition required to exit the loop and arrive at this
definition.

With Gated SSA form, recursively defined variables must con-
tain a p-node. The recursion can be thought of as a cycle in the
value graph, and all cycles are dominated by a p-node. The value
graph corresponding to our previous example is presented in figure
2c. Intuitively, the cycle in the value-graph can be thought of as
generating a stream of values. The p-nodes start by selecting the
initial value from the arrow marked with an “i”. Successive values
are generated from the cyclic graph structure attached to the other
arrow. This p-node “produces” the values ¢, ¢ + 1, ¢ 4 2,... The
7 receives a stream of values and a stream of conditions. When
the stream of conditions goes from frue to false, the 7 selects the
corresponding value in the value stream.

Generally, we can think of p and 7 behaving according to the
following formulas:

w(a,m) = a - plnlo/a], n)
n(0:b,z:7) =n(b,7)
n(l:b,z:0) ==z

Of course, for our purposes, we do not need to evaluate these
formulas, we simply need an adequate, symbolic representation
for the registers =, z, and b,. A more formal semantics should
probably borrow ideas from dataflow programming languages such
as those studied by Tate et. al.[16].

4. Normalization

Once a graph is constructed for two functions, if the functions’
values are not already equivalent, we begin to normalize the graph.
We normalize value graphs using a set of rewrite rules. We apply
the rules to each graph node individually. When no more rules
can be applied, we maximize sharing within the graph and then
reapply our rules. When no more sharing or rules can be applied,
the process terminates.

Our rewrite rules come in two basic types: general simplifica-
tion rules and optimization-specific rules. The general simplifica-
tion rules reduce the number of graph nodes by removing unneces-
sary structure. We say general because these rules only depend on
the graph representation, replacing graph structures with smaller,
simpler graph structures. The optimization-specific rules rewrite
graphs in a way that mirrors the effects of specific optimizations.

n

N
To=c To=2c <
loop : loop : <\
zp = ¢(zo, Tk) zp = pi(wo, T) Lo, on
b=z, <n b=z, <n /:/\:
cbr b,loopl, exit cbr b,loopl, exit 1 «— + c
loop1 : loop1 : .
Th=ap+ 1 ap =z + 1 (c) Value graph representation
br loop br loop
exit : exit :
T =ZTp z =n(b,zp)
(a) SSA while loop (b) GSSA while loop

Figure 2: Representation of while loops

These rules do not always make the graph smaller or simpler, and
one often needs to have specific optimizations in mind when adding
them to the system.

General Simplification Rules. The notation a | b means that we
match graphs with structure a and replace them with b. The first
four general ruless simplify boolean expressions:

a=al true D

a # al false 2)

a = true | a 3)
a # false | a 4)

These last two rules only apply if the comparison is performed
at the boolean type. In fact, all LLVM operations, and hence our
graph nodes, are typed. The types of operators are important and
uninteresting: we do not discuss types in this paper.

There are two general rules for removing unnecessary ¢-nodes.

¢{....true; > t,...} |t ®)
p{a — 1}t (6)

The first rule replaces a ¢-node with one of its branches if all of
its conditions are satisfied for that branch. We write T; for a set of
terms indexed by <. In the first rule, we have a set of true values.
Note that the conditions for each branch are mutually exclusive
with the other branches, so only one branch can have conditions
which are all true. The second rule removes the ¢-node if all of the
branches contain the same value. A special case of this rule is a ¢-
node with only one branch indicating that there is only one possible
path to the ¢-node, as happens with branch elimination.

The ¢ rules are required to validate sparse conditional constant
propagation (SCCP) and global value numbering (GVN). The fol-
lowing example can be optimized by both:

if (¢) fa=1; b=1; d = a;}
else {a=2; b=2;4d-=1;}

if (a == b) {x = d;} else {x = 0;}

return x;

Applying global-value numbering followed by sparse conditional
constant propagation transforms this program to return 1. In-
deed, in each of the branches of the first if-statement, a is equal
to b. Since a == b is always true, the condition of the second
if-statement is constant, and sparse conditional constant propaga-
tion can propagate the left definition of . The above program and
return 1 have the same normalized value graph, computed as fol-

lows:

x —=o(p(c,1,2) == é(c, 1,2),¢(c, 1,1),0)

lo(true, ¢(c, 1,1),0) by (1)
19(c,1,1) by (5)
11 by (6)

There are also general rules for simplifying n- and p-nodes. The
first rule allows us to remove loops that never execute.

n(false, u(z,y)) L = (N

This rule rewrites to the initial value of the p-node before the loop
is entered, namely x. This rule is needed to validate loop-deletion,
a form of dead code elimination. In addition, there are two rules
for loop invariants. The first says that if we have a constant p-node,
then the corresponding 7-node can be removed:

n(c, p(z,x)) | = ®)
n(c,y = p(z,y)) | =)

In rule (8), the p-node has an initial value of x, which must be
defined outside of the loop, and therefore cannot vary within the
loop. Since, = does not vary within the loop the p-node does not
vary, and the loop structure can be removed. Rule (9), expresses
the same condition, but the second term in the p-node is again the
same p-node (we use the notation y — u(x,y) to represent this
self-reference).

These rules are necessary to validate loop invariant code motion.
As an example, consider the following program:

Xx =a+ 3; c = 3;
for (i = 0; 1 < n; i++) {x = a + c;}
return x;

In this program, variable x is defined within a loop, but it is invari-
ant. Moreover, variable c is a constant. Applying global constant
propagation, followed by loop-invariant code motion and loop dele-
tion transforms the program to return (a + 3).The value graph
for is computed as follows:
in = 1(0,in + 1)
z = n(in <n,p(a+3,a+3))
la+c (by 8)

Note that the global copy propagation is taken care of “automati-
cally” by our representation, and we can apply our rule (8) imme-
diately. The other nodes of the graph (¢,,) are eliminated since they
are no longer needed.

Optimization-specific Rules. In addition to the general rules, we
also have a number of rewrite rules that are derived from the
semantics of LLVM. For example, we have a family of laws for
simplifying constant expressions, such as:

add32]5
mul 32)6
sub32]1

Currently we have rules for simplifying constant expressions over
integers, but not floating point or vector types. There are also rules
for rewriting instructions such as:

addaa | shlal
mul a4 | shla?2

These last two rules are included in our validator because we
know the LLVM’s optimizer prefers the shift left instruction. While
preferring shift left may be obvious, there are some less obvious
rules such as:

add z (—k) | subx k
gt 10a] 1t a 10
ltabllea(subbl)

While these transformations may not be optimizations, we believe
LLVM makes them to give the instructions a more regular structure.

Finally, we also have rules that make use of aliasing information
to simplify memory accesses. For example, we have the following
two rules for simplifying loads from memory:

load(p, store(x,q,m)) | load(p,m) (10)
load(p, store(z,p,m)) | x (11)

when p and ¢ do not alias. Our validator can use the result of a
may alias analysis. For now, we only use simple non-aliasing rules:
two pointers that originate from two distinct stack allocations may
not alias; two pointers forged using getelemptr with different
parameters may not alias, etc.

4.1 Efficiency

At this point is natural to wonder why we did not simply define a
normal form for expressions and rewrite our graphs to this normal
form. This is a good option, and we have experimented with this
strategy using external SMT provers to find equivalences between
expressions. However, one of our goals is to build a practical
tool which optimizes the best case performance of the validator
(we expect most optimizations to be correct). Using our strategy
of performing rewrites motivated by the optimizer, we are often
able to validate functions with tens of thousands of instructions
(resulting in value graphs with hundreds of thousands of nodes)
with only a few dozen rewritings. That is, we strive to make the
amount of work done by the validator proportional to the number
of transformations performed by the optimizer.

To this end, the rewrite rules derived from LLVM semantics
are designed to mirror the kinds of rewritings that are done by
the LLVM optimization pipeline. In practice, it is much more ef-
ficient to transform the value graphs in the same way the optimizer
transforms the assembly code: if we know that LLVM will prefer
shl a 1to a + a, then we will rewrite a + a but not the other way
around.

As another, more extreme, example, consider the following C
code, and two possible optimizations: SCCP and GVN.

a=x<y;
b=x<y;
if (a) {

if (a == b) {c = 1;} else {c = 2;}

Figure 3: A shared value-graph

} else {c = 1;}
return c;

If the optimization pipeline is setup to apply SCCP first, then a may
be replaced by true. In this case, GVN can not recognize that a and
b are equal, and the inner condition will not be simplified. However,
if GVN is applied first, then the inner condition can be simplified,
and SCCP will propagate the value of c, leading to the program
that simply returns 1. The problem of how to order optimizations
is well-known, and an optimization pipeline may be reordered to
achieve better results. If the optimization pipeline is configured
to use GVN before SCCP, then, for efficiency, our simplification
should be setup to simplify at join points before we substitute the
value of a.

4.2 Extended Example

We now present an example where all these laws interplay to
produce the normalized value-graph. Consider the C code below:

int f(int n, int m) {
int * t = NULL;
int * t1 = alloca(sizeof(int));
int * t2 alloca(sizeof (int));
int x, y, z = 0;
*tl = 1; *t2 = m;

t = t1;
for (int i = 0; i < n; ++i) {
if (1% 3) {
x=1; z=x <K y; y=Xx;
} else {
Xx=2,y=2;
}
if (x ==y) t = ti;
else t = t2;
}
*t = 42;
return *t2 + *t2;
¥

First, note that this function returns m + m. Indeed, x is always
equal to y after the execution of the first conditional statement in

the for loop. Therefore, the second conditional statement always
executes the left branch and assigns ¢1 to ¢. This is actually a loop
invariant, and, since ¢; is assigned to ¢ before the loop, ¢; is always
equal to t. t1 and ¢2 are pointers to two distinct regions of memory
and cannot alias. Writing through ¢; does not affect what is pointed
to by t2, namely m. The function therefore returns m + m. Since
the loop terminates, an optimizer may replace the body of this
function with m < 1, using a blend of global-value numbering
with alias analysis, sparse-conditional constant propagation and
loop deletion.

Our value-graph construction and normalization produces the
value-graph corresponding to m < 1 for this example. The initial
value-graph is presented in figure 3. Some details of the graph have
been elided for clarity. We represent load, store, and alloca
nodes with 1d, st, and al respectively. To make the graph easier to
read, we also used dashed lines for edges that go to pointer values.
Below is a potential normalization scenario.

e The arguments of the == node are shared; it is rewritten to true.

e The gate of the ¢ node is true; its predecessor, u, is modified to
point to the target of the true branch of the ¢ node rather than
to ¢ itself.

e The arguments of this node are shared; its predecessor, 7, is
modified to point to the target of y instead of itself.

e The condition of the 7 node is terminating, and its value acyclic;
Its predecessor, st42, is modified to point to the target of 7
instead of 7 itself.

e It is now obvious that the load and its following store use
distinct memory regions; the load can “jump over the store.”

e The load and its new store use the same memory region; the
load is therefore replaced by the stored value, m.

e The arguments of the + node are shared; The + node is rewrit-
ten into a left shift.

5. Experimental evaluation

In our experimental evaluation, we aim to answer three different
questions.

1. How effective is the tool for a decent pipeline of optimization?
2. How effective is the tool optimization-by-optimization?

3. What is the effect of normalization?

Our measure of effectiveness is simple: the fewer false alarms
our tool produces, the more optimized the code will be. Put another
way, assuming the optimizer is always correct, what is the cost of
validation? In our experiments, we consider any alarm to be a false
alarm.

5.1 The big picture

We have tested our prototype validator on the pure C programs
of the SPECCPU 2006[5] benchmark (The xalancbmk benchmark
is missing because the LLVM bitcode linker fails on this large
program). In addition, we also tested our validator on the SQLite
embedded database[2]. Each program was first compiled with clang
version 2.8[1], and then processed with the mem2reg pass of the
LLVM compiler to place ¢-nodes. These assembly files make up
the unoptimized inputs to our validation tool. Each unoptimized
input was optimized with LLVM, and the result compared to the
unoptimized input by our validation tool.

Test suite information. Table 1 lists the benchmark programs
with the size of the LLVM-assembly code file, number of lines of
assembly, and the number of functions in the program. Our research

| [[size | LOC [functions |

SQLite 56M | 136K 1363
bzip2 904K 23K 104
gce 63M | 1.48M 5745
h264ref 73M | 190K 610
hmmer 33M 90K 644
Ibm 161K 5K 19

libquantum || 337K 9K 115
mcf 149K 3K 24

milc 1.2M 32K 237
perlbench 15M 399K 1998
sjeng 1.5M 39K 166
sphinx 1.7M 44K 391

Table 1: Test suite information

prototype does not analyze functions with irreducible control flow
graphs. This restriction comes from the front-end’s computation of
Gated SSA form. It is well known how to compute Gated SSA form
for any control-flow graph[18]. However, we have not extended
our front-end to handle irreducible control flow graphs. We do not
believe the few irreducible functions in our benchmarks will pose
any new problems, since neither the Gated SSA form nor our graph
representation would need to be modified.

Pipeline information. For our experiment, we used a pipeline
consisting of:

e ADCE (advanced dead code elimination), followed by
e GVN (global value numbering),

e SCCP (sparse-condition constant propagation),

e LICM (loop invariant code motion),

e LD (loop deletion),

e LU (loop unswitching),

e DSE (dead store elimination).

The optimizations we chose are meant to cover, as much as possi-
ble, the intra-procedural optimizations available in LLVM. We do
not include constant propagation and constant folding because both
of these are subsumed by sparse-conditional constant propagation
(SCCP). Similarly, dead-code and dead-instruction elimination are
subsumed by aggressive dead-code elimination (ADCE). We did
not include reassociate and instcombine because we haven’t ad-
dressed those yet. One reason these haven’t been our priority is that
they are conceptually simple to validate but require many rules.

For each benchmark, we ran all of the optimizations, and then
attempted to validate the final result. Since we used the SQLite
benchmark to engineer our rules, it is not surprising that, overall,
that benchmark is very close to 90%. The rules chosen by studying
SQLite are also very effective across the other benchmarks. We do
not do quite as well for the perlbench and gcc benchmarks. Cur-
rently, our tool only uses the basic rewrite rules we have described
here. Also we do not handle global constants or floating point ex-
pressions.

Pipeline Results. Overall, with the small number of rules we have
described in this paper, we can validate 80% of the per-function
optimizations. The results per-benchmark are shown in figure 4.
For our measurements, we counted the number of functions for
which we could validate all of the optimizations performed on the
function: even though we may validate many optimizations, if even
one optimization fails to validate we count the entire function as
failed. We found that this conservative approach, while rejecting

1,362 104 608 644 19 115 24 237 1947 166 387 5,682
100% [~

90% [
80%

70% |
60%
50%
40%
30%
20%
10%

0%

] Alarms
[validated

Percentage of total # of functions

bzip2
mcf
milc
sjeng
gee

o

2

Ed
s

h264ref
hmmer
Ibm
libquantum
perlbench
sphinx

Benchmarks

Figure 4: Validation results for optimization pipeline

more optimizations, leads to a simpler design for our validated
optimizer which rejects or accepts whole functions at a time. The
validation time for GCC is 19m19s, perl 2m56s, and SQLite 55s.

5.2 Testing Individual Optimizations

The charts in Figure 5 summarize the results of validating functions
for different, single optimizations. The height of each bar indicates
the total number of functions transformed for a given benchmark
and optimization. The bar is split showing the number of validated
(below) and unvalidated (above) functions. The total number of
functions is lower in these charts because we do not count functions
that are not transformed by the optimization.

It is clear from the charts that GVN with alias analysis is the
most challenging optimization for our tool. It is also the most
important as it performs many more transformations than the other
optimizations. In the next section we will study the effectiveness of
rewrite rules on our system.

5.3 Rewrite Rules

Figure 6 shows the effect of different rewrite rules for the GVN
optimization with our benchmarks. The total height of each bar
shows the percentage of functions we validated for each benchmark
after the GVN optimization. The bars are divided to show how the
results improve as we add rewrite rules to the system. We start with
no rewrite rules, then we add rules and measure the improvement.
The bars correspond to adding rules as follows:

. no rules

. ¢ simplification

. constant folding

. load/store simplification

. n simplification

A L AW N =

. commuting rules

We have already described the first five rules. The last set of rules
tries to rearrange the graph nodes to enable the former rules. For
example, we have a rule that tries to “push down” n-nodes to get
them close to the matching p-nodes.

We can see from this chart that different benchmarks are ef-
fected differently by the different rules. For example, SQLite is not
improved by adding rules for constant folding or ¢ simplification.
However, load/store simplification has an effect. This is probably
because SQLite has been carefully tuned by hand and does not have
many opportunities for constant folding or branch elimination. The
Ibm benchmark, on the other hand, benefits quite a lot from ¢ sim-
plification.

100%

80%

60%

40%

EECEEO
—pwsewo

Percentagle of success

20%

0%

milc

o

=
S

o

h264ref
hmmer
libquantum
perlbench
sjeng
sphinx
sqlite3

Benchmark

Figure 6: GVN

From the data we have, it seems that our technique is able to suc-
cessfully validate approximately 50% of GVN optimizations with
no rewrite rules at all. This makes intuitive sense because our sym-
bolic evaluation hides many of the syntactic details of the programs,
and the transformations performed by many optimizations are, in
the end, minor syntactic changes. By adding rewrite rules we can
dramatically improve our results.

Up to this point, we have avoided adding “special purpose”
rules. For instance, we could improve our results by adding rules
that allow us to reason about specific C library functions. For
example, the rule:

y = atoi(q);
x = atoi(p);

x = atoi(p);

y = atoi(q);
can be added because atoi does not modify memory. Another
example is:

memset(p,x,l1);
=z
y = load(getelemptr(p,l2)) la<ly

which enables more aggressive constant propagation. Both of these
rules seem to be used by the LLVM optimizer, but we have not
added them to our validator at this time. However, adding these
sorts of rules is fairly easy, and in a realistic setting many such
rules would likely be desired.

Figure 7 shows similar results for loop-invariant code motion
(LICM). The baseline LICM, with no rewrite rules, is approxi-
mately 75-80%. If we add in all of our rewrite rules, we only im-
prove very slightly. In theory, we should be able to completely val-
idate LICM with no rules. However, again, LLVM uses specific
knowledge of certain C library functions. For example, in the fol-
lowing loop:

for (int i = 0; i < strlen(p); i++) f(p[il);

the call to strlen is known (by LLVM) to be constant. Therefore,
LLVM will lift the call to strlen out of the loop:

int tmp = strlen(p);
for (int i = 0; i < tmp; i++) f(p[il);

Our tool does not have any rules for specific functions, and there-
fore we do not validate this transformation. The reason why we
sometimes get a small improvement in LICM is because very oc-
casionally a rewriting like the one above corresponds to one of our
general rules.

Finally, figure 8 shows the effect of rewrite rules on sparse-
conditional constant propagation. For this optimization, we used
four configurations:

1. no rules

Number of optimized functions

adce
dse
g

licm

scep

loop—deletion
loop-unswitch

bzip2

Number of optimized functions

1] 3 =] g = = b=
o} 32
-] 3 & S £ £ g
B = 3 H 2
o} 2
i
£
= &
perlbench

O Alarms
[Validated

O Alarms
[Validated

Number of optimized functions

8 2 g £ g] g
k=l =l e 2 L1 £ 5]
2 2 = = g

o] Z

z

1 i

s 3

= 2

sqlite3

2000 —
1,800
1,600
1,400
1,200
1,000
800
600
400
200

Number of optimized functions

adce
dse
g

licm

scep

loop—deletion
loop—unswitch

Figure 5: Validator results for individual optimizations

100%

80%

60%

40%

Percentagle of success

20%

0%

milc

Q £
o
£ & S
o

2. constant folding

h264ref
hmmer
libquantum
perlbench
sjeng
sphinx
sqlite3

Benchmark

Figure 7: LICM

3. ¢ simplification
4. all rules

As expected, with no rules the results are very poor. However, if we
add rules for constant folding, we see an immediate improvement,
as expected. If we also add rules for reducing ¢-nodes, bzip2
immediately goes to 100%, even though these rules ave no effect
on SQLite. However, additional rules do improve SQLite, but not
the other benchmarks.

5.4 Discussion

While implementing our prototype, we were surprised to find that
essentially all of the technical difficulties lie in the complex ¢-
nodes. In an earlier version of this work we focused on structured
code, and the (binary) ¢-nodes did not present any real difficulties.
However, once we moved away from the structured-code restriction

100%

80%

60%

EOEN
—nw e

40%

Percentagle of success

20%

0%

bzip2
h264ref
hmmer
libquantum
milc
perlbench
sjeng
sphinx
sqlite3

Benchmark

Figure 8: SCCP

we encountered more problems. First, although the algorithms are
known, computing the gates for arbitrary control flow is a fairly
involved task. Also, since the gates are dependent on the paths in
the CFG, and general C code does not have a simple structured
control flow, optimizations will often change the gating conditions
even if the control flow is not changed.

Another important aspect of the implementation is the technique
for maximizing sharing within the graph. The rewrite rules do a
good job of exposing equivalent leaf nodes in the graphs. However,
in order to achieve good results, it is important to find equivalent
cycles in the graphs and merge them. Again, matching complex
¢-nodes seems to be the difficult part. To match cycles, we find
pairs of p-nodes in the graph, and trace along their paths in par-
allel trying to build up a unifying substitution for the graph nodes
involved. For ¢-nodes we sort the branches and conditions and per-
form a syntactic equality check. This technique is very simple, and

efficient because it only needs to query and update a small portion
of the graph.

We also experimented with a Hopcroft partitioning algorithm[7].

Rather than a simple syntactic matching, our partitioning algorithm
uses a prolog-style backtracking unification algorithm to find con-
gruences between ¢-nodes. Surprisingly, the partitioning algorithm
with backtracking does not perform better than the simple unifica-
tion algorithm. Both algorithms give us roughly the same percent-
age of validation. Our implementation uses the simple algorithm by
default, and when this fails it falls back to the slower, partitioning
algorithm. Interestingly, this strategy performs slightly better than
either technique alone, but not significantly better.

Matching expressions with complex ¢-nodes seems well within
the reach of any SMT prover. Our preliminary experiments with Z3
suggest that it can easily handle the sort of equivalences we need
to show. However, this seems like a very heavy-weight tool. One
question in our minds is whether or not there is an effective tech-
nique somewhere in the middle: more sophisticated than syntactic
matching, but short of a full SMT prover.

6. Related work

How do those results compare with the work of Necula and Tate et
al.? The validator of Necula validates part of GCC 2.7 and the ex-
periments show the results of compiling, and validating, GCC 2.91.
It is important to note that the experiments were run on a Pentium
Pro machine running at 400 MHz. Four optimizations were con-
sidered. Common-subexpression elimination, with a rate of false
alarms of roughly 5% and roughly 7 minutes running time. Loop
unrolling with a rate of false alarms of 6.3% and roughly 17 min-
utes running time. Register allocation with a rate of false alarms
of 0.1% and around 10 minutes running time. Finally, instruction
scheduling with a rate of false alarms of 0.01% and around 9 min-
utes running time. Unfortunately, the only optimization that we can
compare to is CSE as we do not handle loop unrolling, and reg-
ister allocation is part of the LLVM backend. In theory, we could
handle scheduling (with as good results) but LLVM does not have
this optimization. For CSE, our results are not as good as Necula’s.
However, we are dealing with a more complex optimization: global
value numbering with partial redundancy elimination and alias in-
formation, libc knowledge, and some constant folding. The running
times are also similar, but on different hardware. It is therefore un-
clear whether our validator does better or worse.

The validator of Tate et al. validates the Soot research compiler
which compiles Java code to the JVM. On SpecJVM they report an
impressive rate of alarms of only 2%. However, the version of the
Soot optimizer they validate uses more basic optimizations than
LLVM, and does not include, for instance, GVN. Given that our
results are mostly directed by GVN with alias analysis, it makes
comparisons difficult. Moreover, they do not explain whether the
number they report takes into account all the functions or only the
ones that were actually optimized.

The validator of Kanade er al., even though heavily instru-
mented, is also interesting. They validate GCC 4.1.0 and report no
false alarms for CSE, LICM, and copy propagation. To our knowl-
edge, this experiment has the best results. However, it is unclear
whether their approach can scale. The authors say that their ap-
proach is limited to functions with several hundred RTL instruc-
tions and a few hundred transformations. As explained in the in-
troduction, functions with more than a thousand instructions are
common in our setting.

There is a wide array of choices for value-graph representations
of programs. Weise et al. [19] have a nice summary of the various
value-graphs. Ours is close to the representation that results from
the hash-consed symbolic analysis of a gated SSA graph [6, 18].

7. Conclusion

In conclusion, we believe that normalizing value-graph translation
validation of industrial-strengh compilers without instrumentation
is feasible. The design relies on well established algorithms and
is simple enough to implement. We have been able, in roughly 3
man-months, to build a tool that can validate the optimizations of a
decent LLVM pipeline on challenging benchmarks, with a reason-
able rate of false alarms. Better yet, we know that many of the false
alarms that we witness now require the addition of normalization
rules but no significant changes in the design. For instance, insider
knowledge of libc functions, floating-points constant folding and
folding of global variables are sources of false alarms that can be
dealt with by adding normalization rules. There is also room for
improvement of the runtime performance of the tool.

There are still a few difficult challenges ahead of us, the most
important of which is inter-procedural optimizations. With LLVM,
even -O1 makes use of such optimizations and, even though it is
clear that simulation-based translation validation can handle inter-
procedural optimizations [12], we do not yet know how to precisely
generalize normalizing translation. We remark that, in the case of
safety-critical code that respects standard code practices [3], as can
be produced by tools like Simulink [15], the absence of recursive
functions allows us to inline every function (which is reasonable
with hash-consing). Preliminary experiments indicate that we are
able to validate very effectively inter-procedural optimizations in
such a restricted case. Advanced loop transformations are also
important, and we believe that this problem may not be as hard
as it may seem at first. Previous work [9, 17] has shown that it can
be surprisingly easy to validate advanced loop optimizations such
as software pipelining with modulo variable expansion if we reason
at the value-graph level.

Acknowledgments

We would like to thank Vikram Adve for his early interest and en-
thusiasm, and Sorin Lerner for discussing this project and exchang-
ing ideas.

References
[1] LLVM 2.8. http://llvm.org.
[2] SQLite 3. http://www.sqlite.org.

[3] The Motor Industry Software Reliability Association. Guidelines for
the use of the c language in critical systems. http://www.misra.org.uk,
2004.

[4] Clark W. Barrett, Yi Fang, Benjamin Goldberg, Ying Hu, Amir Pnueli,
and Lenore Zuck. TVOC: A translation validator for optimizing
compilers. In Computer Aided Verification, volume 3576 of Lecture
Notes in Computer Science, pages 291-295. Springer, 2005.

[5] SPEC CPU2006. http://www.spec.org/cpu2006/.

[6] Paul Havlak. Construction of thinned gated single-assignment form.
In Proc. 6rd Workshop on Programming Languages and Compilers for
Parallel Computing, pages 477-499. Springer Verlag, 1993.

[7] John Hopcroft. An n log n algorithm for minimizing states of a finite
automaton. In The Theory of Machines and Computations, 1971.

[8] Aditya Kanade, Amitabha Sanyal, and Uday Khedker. A PVS based
framework for validating compiler optimizations. In 4th Software
Engineering and Formal Methods, pages 108-117. IEEE Computer
Society, 2006.

[9] Xavier Leroy. Formal certification of a compiler back-end, or: pro-
gramming a compiler with a proof assistant. In 33rd symposium Prin-
ciples of Programming Languages, pages 42-54. ACM Press, 2006.

[10] E. Moggi. Computational lambda-calculus and monads. In 4th Logic
in computer science, pages 14-23. IEEE, 1989.

[11] George C. Necula. Translation validation for an optimizing compiler.
In Programming Language Design and Implementation 2000, pages
83-95. ACM Press, 2000.

[12] Amir Pnueli and Anna Zaks. Validation of interprocedural optimiza-
tion. In Proc. Workshop Compiler Optimization Meets Compiler Veri-
fication (COCV 2008), Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 2008.

[13] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation valida-
tion. In Tools and Algorithms for Construction and Analysis of Sys-
tems, TACAS "98, volume 1384 of Lecture Notes in Computer Science,
pages 151-166. Springer, 1998.

[14] Xavier Rival. Symbolic transfer function-based approaches to certi-
fied compilation. In 31st symposium Principles of Programming Lan-
guages, pages 1-13. ACM Press, 2004.

[15] Simulink. http://mathworks.com.

[16] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality
saturation: A new approach to optimization. In 36th Principles of
Programming Languages, pages 264-276. ACM, 2009.

[17] Jean-Baptiste Tristan and Xavier Leroy. A simple, verified valida-
tor for software pipelining. In 37th Principles of Programming Lan-
guages, pages 83-92. ACM Press, 2010.

[18] Peng Tu and David Padua. Efficient building and placing of gating
functions. In Programming Language Design and Implementation,
pages 47-55, 1995.

[19] Daniel Weise, Roger F. Crew, Michael D. Ernst, and Bjarne Steens-
gaard. Value dependence graphs: Representation without taxation. In
21st Principles of Programming Languages, pages 297-310, 1994.

