
Exponential Stochastic Cellular Automata
for Massively Parallel Inference

Manzil Zaheer* Michael Wick Jean-Baptiste Tristan† Alex Smola Guy L Steele Jr
Carnegie Mellon Oracle Labs Oracle Labs Carnegie Mellon Oracle Labs

Abstract

We propose an embarrassingly parallel, mem-
ory efficient inference algorithm for latent
variable models in which the complete data
likelihood is in the exponential family. The
algorithm is a stochastic cellular automaton
and converges to a valid maximum a poste-
riori fixed point. Applied to latent Dirichlet
allocation we find that our algorithm is over
an order or magnitude faster than the fastest
current approaches. A simple C++/MPI
implementation on a 20-node Amazon EC2
cluster samples at more than 1 billion to-
kens per second. We process 3 billion doc-
uments and achieve predictive power compet-
itive with collapsed Gibbs sampling and vari-
ational inference.

1 Introduction

In the past decade, frameworks such as stochastic gra-
dient descent (SGD) [28] and map-reduce [8] have en-
abled machine learning algorithms to scale to larger
and large datasets. However, these frameworks are not
always applicable to Bayesian latent variable models
with rich statistical dependencies and intractable gra-
dients. Variational methods [14] and Markov chain
Monte-Carlo (MCMC) [10] have thus become the sine
qua non for inferring the posterior in these models.

Sometimes—due to the concentration of measure
phenomenon associated with large sample sizes—
computing the full posterior is unnecessary and maxi-
mum a posteriori (MAP) estimates suffice. It is hence
tempting to employ gradient descent. However, for
latent variable models such as latent Dirichlet alloca-
tion (LDA), calculating gradients involves expensive
expectations over rich sets of variables [26].

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

MCMC is an appealing alternative, but traditional al-
gorithms such as the Gibbs sampler are inherently se-
quential and the extent to which they can be paral-
lelized depends heavily upon how the structure of the
statistical model interacts with the data. For instance,
chromatic sampling [11] is infeasible for LDA, due to
its dependence structure. We propose an alternate ap-
proach based on stochastic cellular automata (SCA).
The automaton is massively parallel like conventional
cellular automata, but employs stochastic updates.

Our proposed algorithm, exponential SCA (ESCA),
is a specific way of mapping inference in latent vari-
able models with complete data likelihood in the ex-
ponential family into an instance of SCA. ESCA has
a minimal memory footprint because it stores only
the data and the minimal sufficient statistics (by
the very definition of sufficient statistics, the foot-
print cannot be further reduced). In contrast, varia-
tional approaches such as stochastic variational infer-
ence (SVI) [13] require storing the variational parame-
ters, while MCMC-based methods, such as YahooLDA
[30] require storing the latent variables. Thus, ESCA
substantially reduces memory costs, enabling larger
datasets to fit in memory, and significantly reducing
communication costs in distributed environments.

Furthermore, the sufficient statistics dramatically im-
proves efficiency. Typically, in the general case of SCA,
updating a cell requires first assembling the values of
all the neighboring cells before aggregating them into a
local stochastic update. However, in ESCA, the suffi-
cient statistics adequately summarize the states of the
neighbors; the computational load is therefore small
and perfectly balanced across the cells.

We demonstrate how ESCA is a flexible framework for
exponential latent variable models such as LDA. In
our experiments, we process over 3 billion documents
at a rate of 570 million tokens per second on a small
cluster of 4 commodity servers. That said, ESCA is
much more general. Table 1 explicitly lists some of the
more common modeling choices for which ESCA can

*Work done when an intern at Oracle Labs.
†Corresponding author.

966

ESCA for Massively Parallel Inference

Table 1: Examples of some popular models to which ESCA is applicable.

mix. component/emitter Bernoulli Multinomial Gaussian Poisson

Categorical Latent Class Unigram Document Mixture of
Model [9] Clustering Gaussians [21]

Dirichlet Mixture Grade of Membership Latent Dirichlet Gaussian-LDA [6] GaP Model [3]
Model [35] Allocation [2]

be easily employed. Our algorithm implicitly simu-
lates stochastic expectation maximization (SEM), and
is thus provably correct in the sense that it converges
in distribution to a stationary point of the posterior.

2 Exponential SCA

Stochastic cellular automata (SCA), also known as
probabilistic cellular automata, or locally-interacting
Markov chains, are a stochastic version of a discrete-
time, discrete-space dynamical system in which a noisy
local update rule is homogeneously and synchronously
applied to every site of a discrete space. They have
been studied in statistical physics, mathematics, and
computer science, and some progress has been made
toward understanding their ergodicity and equilibrium
properties. A recent survey [18] is an excellent intro-
duction to the subject, and a dissertation [17] contains
a comprehensive and precise presentation of SCA.

The automaton, as a (stochastic) discrete-time,
discrete-space dynamical system, is given by an evo-
lution function Φ : S −→ S over the state space
S = Z −→ C which is a mapping from the space of
cell identifiers Z to cell values C. The global evolution
function applies a local function φz(c1, c2, · · · , cr) 7→ c
s.t. ci = s(zi) to every cell z ∈ Z. That is, φ examines
the values of each of the neighbors of cell z and then
stochastically computes a new value c. The dynamics
begin with a state s0 ∈ S that can be configured using
the data or a heuristic.

Exponential SCA (ESCA) is based on SCA but
achieves better computational efficiency by exploiting
the structure of the sufficient statistics for latent vari-
able models in which the complete data likelihood is
in the exponential family. Most importantly, the lo-
cal update function φ for each cell depends only upon
the sufficient statistics and thus does not scale linearly
with the number of neighbors.

2.1 Latent Variable Exponential Family

Latent variable models are useful when reasoning
about partially observed data such as collections of
text or images in which each i.i.d. data point is a doc-
ument or image. Since the same local model is applied
to each data point, they have the following form

p(z,x, η) = p(η)
∏

i

p (zi, xi|η) . (1)

Our goal is to obtain a MAP estimate for the parame-
ters η that explain the data x through the latent vari-
ables z. To expose maximum parallelism, we want
each cell in the automaton to correspond to a data
point and its latent variable. However, in general all
latent variables depend on each other via the global
parameters η, and thus the local evolution function φ
would have to examine the values of every cell in the
automaton.

Fortunately, if we further suppose that the complete
data likelihood is in the exponential family, i.e.,

p(zi, xi|η) = exp (〈T (zi, xi) , η〉 − g(η)) (2)

then the complete and sufficient statistics are given by

T (z,x) =
∑

i

T (zi, xi) (3)

and we can thus express any estimator of interest as
a function of just T (z,x). Further, when employing
expectation maximization (EM), the M-step is pos-
sible in closed form for many members of the ex-
ponential family. This allows us to reformulate the
cell level updates to depend only upon the sufficient
statistics instead of the neighboring cells. The idea is
that, unlike SCA (or MCMC in general) which pro-
duces a sequence of states that correspond to com-
plete variable assignments s0, s1, . . . via a transition
kernel q(st+1|st), ESCA produces a sequence of suf-
ficient statistics T 0, T 1, . . . directly via an evolution
function Φ(T t) 7→ T t+1.

2.2 Stochastic EM

Before we present ESCA, we must first describe
stochastic EM (SEM). Suppose we want the MAP esti-
mate for η and employ a traditional expectation max-
imization (EM) approach:

max
η

p(x, η) = max
η

∫
p(z,x, η)µ(dz)

EM finds a mode of p(x, η) by iterating two steps:

E-step Compute in parallel p(zi|xi, η(t)).
M-step Find η(t+1) that maximizes the expected

value of the log-likelihood with respect to the con-
ditional probability, i.e.

η(t+1) = arg max
η

Ez|x,η(t) [log p(z,x, η)]

= ξ−1
(

1

n+ n0

∑

i

Ez|x,η(t) [T (zi, xi)] + T0

)

967

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

where ξ(η)=∇g(η) is invertible as ∇2g(θ)�0 and
n0, T0 parametrize the conjugate prior. 1

Although EM exposes substantial parallelism, it is dif-
ficult to scale, since the dense structure p(zi|xi, η(t))
defines values for all possible outcomes for z and thus
puts tremendous pressure on memory bandwidth.

To overcome this we introduce sparsity by employing
stochastic EM (SEM) [4]. SEM substitutes the E-
step for an S-step that replaces the full distribution
with a single sample:

S-step Sample z
(t)
i ∼ p(zi|xi; η(t)) in parallel.

Subsequently, we perform the M-step using the im-
puted data instead of the expectation. This simple
modification overcomes the computational drawbacks
of EM for cases in which sampling from p(zi|xi; η(t))
is feasible. We can now employ fast samplers, such as
the alias method, exploit sparsity, reduce CPU-RAM
bandwidth while still maintaining massive parallelism.

The S-step has other important consequences. Notice
that the M-step is now a simple function of current
sufficient statistics. This implies that the conditional
distribution for the next S-step is expressible in terms
of the complete sufficient statistics

p(zi|xi; η(t)) = f(zi, T (x, z(t))).

Thus each S-step depends only upon the sufficient
statistics generated by the previous step. Therefore,
we can operate directly on sufficient statistics with-
out the need to assign or store latent variables/states.
Moreover it opens up avenues for distributed and par-
allel implementations that execute on an SCA.

2.3 ESCA for Latent Variable Models

SEM produces an alternating sequence of S and M
steps in which the M step produces the parameters
necessary for the next S step. Since we can compute
these parameters on the fly there is no need for an
explicit M step. Instead, ESCA produces a sequence
consisting only of S steps. We require the exponential
family to ensure that these steps are both efficient and
compact. We now present ESCA more formally.

Define an SCA over the state space S of the form:

S = Z −→ K×X (4)

where Z is the set of cell identifiers (e.g., one per token
in a text corpus), K is the domain of latent variables,
and X is the domain of the observed data.

The initial state s0 is the map defined as follows: for
every data point, we associate a cell z to the pair

1The inversion may not be always available in closed
form, in which case we resort to numerical techniques.

(kz, x) where kz is chosen at random from K and in-
dependently from kz′ for all z′ 6= z. This gives us the
initial state s0.

s0 = z 7→ (kz, x) (5)

We now need to describe the evolution function Φ.
First, assuming that we have a state s and a cell z, we
define the following distribution:

pz(k|s) = f(z, T (s)) (6)

Assuming that s(z) = (k, x) and that k′ is a sample
from pz (hence the name “stochastic” cellular automa-
ton) we define the local update function as:

φ(s, z) = (k′, x)

where s(z) = (k,x) and k′ ∼ pz(· |s)
(7)

That is, the observed data remain unchanged, but we
choose a new latent variable according to the distribu-
tion pz induced by the state. We obtain the evolution
function of the stochastic cellular automaton by ap-
plying the function φ uniformly on every cell.

Φ(s) = z 7→ φ(s, z) (8)

Finally, the SCA algorithm simulates the evolution
function Φ starting with s0.

As explained earlier, due to our assumption of com-
plete data likelihood belonging to the exponential fam-
ily, we never have to represent the states explicitly, and
instead employ the sufficient statistics.

An implementation can, for example, have two copies
of the data structure containing sufficient statistics
T (0) and T (1). We do not compute the values T (z,x)
but keep track of the sum as we impute values to the
cells/latent variables. During iteration 2t of the evolu-
tion function, we apply Φ by reading from T (0) and in-
crementing T (1) as we sample the latent variables (See
Figure 1). Then in the next iteration 2t+ 1 we reverse
the roles of the data structures, i.e. read from T (1)

and increment T (0). We summarize in Algorithm 1.

Algorithm 1 ESCA

1: Randomly initialize each cell
2: for t = 0→ num iterations do
3: for all cell z independently in parallel do
4: Read sufficient statistics from T (t mod 2)

5: Compute stochastic updates using pz(k|s)
6: Write sufficient statistics to T (t+1 mod 2)

7: end for
8: end for

Use of such read/write buffers offer a virtually lock-free
(assuming atomic increments) implementation scheme
for ESCA and is analogous to double-buffering in com-
puter graphics. Although there is a synchronization
barrier after each round, its effect is mitigated because
each cell’s work depends only upon the sufficient statis-
tics and thus does the same amount of work. There-

968

ESCA for Massively Parallel Inference

(a) Phase 1 (b) Phase 2
Figure 1: Efficient (re)use of buffers

fore, evenly balancing the work load across computa-
tion nodes is trivial, even for a heterogeneous cluster.

Furthermore, in the case of discrete latent variable,
updating sufficient statics only requires increments to
the data structure T (r) allowing the use of approximate
counters [20, 5]. Approximate counters greatly reduce
memory costs for the counts: e.g., only 4 or 8 bits per
counter. Recent empirical evidence demonstrates that
approximate counters preserve statistical performance
without compromising runtime performance [32]. In
fact, speed often increases because not every increment
to the counter results in a write to memory. Note, due
to the compression, maintaining two buffers requires
less memory than one. Finally, if the latent variables
are discrete valued then we can leverage the fast Vose’
alias method [34] to sample. The O(|K|) construction
cost for the alias method can be easily amortized be-
cause the rule is homogeneous and thus alias tables
can be shared. Details about alias sampling method is
provided in Appendix E.

2.4 Wide Applicability of ESCA

As stated previously, ESCA is technically applicable to
any model in which the complete data likelihood is in
the exponential family. Designing an ESCA algorithm
for a model of interest requires simply deriving the S-
step for the local update function in the automaton.
The S-step is the full conditional (Equation 6) which is
easy to derive for many models; for example, mixture
models in which (1) the data and parameter compo-
nents are conjugate and (2) the latent variables and
priors are conjugate. We list a few examples of such
models in Table 1 and provide additional details in Ap-
pendix F. Of course, the extent to which the models
enable exploitation of sparsity varies.

ESCA is also applicable to models such as restricted
Boltzmann machines (RBMs). For example, if the
data were a collection of images, each cell could inde-
pendently compute the S-step for its respective image.
For RBMs the cell would flip a biased coin for each
latent variable, and for deep Boltzmann machines, the
cells could perform Gibbs sampling. We save a precise
derivation and empirical evaluation for future work.

2.5 Understanding the limitations of ESCA

While ESCA has tremendous potential as a computa-
tional model for machine learning, in some cases, using
it to obtain MAP estimates is not clear.

Consider an Ising model on an d-dimensional torus H
p(x) ∝

∏

〈i,j〉∈H
exp(wijxixj) (9)

in which xi takes on values in {−1, 1}. The equilibrium
distribution of SCA with a Gibbs update is then [23]

q(x) ∝
∏

〈i,j〉∈H
cosh(wijxixj). (10)

Note that the hyperbolic cosine function (cosh) is sym-
metric in the sense that cosh(r) = cosh(−r). For val-
ues r ≥ 0 cosh is a good approximation and has a
maximum that corresponds to the exponential func-
tion; however, for values r < 0, the cosh is a poor
approximation for the exponential function.

Let x1, x2 be two random variables taking on values in
{−1, 1}. We define a simple two-variable Ising model
on a trivial one-dimensional torus:

p(x1, x2) ∝ exp(x1x2) (11)

We can enumerate and quantify the state space under
both SCA q(x1, x2) and the true distribution p(x1, x2):

state x1 x2 x1 ∗ x2 q(x1, x2) ∝ p(x1, x2) ∝
0 -1 -1 1 cosh(1) exp(1)
1 -1 1 -1 cosh(-1) exp(-1)
2 1 -1 -1 cosh(-1) exp(-1)
3 1 1 1 cosh(1) exp(1)

Since cosh is symmetric, all states are equally probable
for SCA and states 1 and 2 are MAP states. Yet, un-
der the true distribution, they are not. Consequently,
SCA with a Gibbs rule for the local evolution function
can yield incorrect MAP estimates.

Fortunately, in most cases we are interested in a model
over a dataset in which the data is i.i.d. That is, we
can fix our example as follows. Rather than paralleliz-
ing a single Ising model at the granularity of pixels
(over a single torus or grid), we instead parallelize the
Ising model at the granularity of the data (over multi-
ple tori, one for each image). Then, we could employ
Gibbs sampling on each image for the S-step.

969

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

2.6 Convergence

We now address the critical question of how the in-
variant measure of ESCA for the model presented in
Section 2.1 is related to the true MAP estimates. First,
note that SCA is ergodic [17], a result that immedi-
ately applies if we ignore the deterministic components
of our automata (corresponding to the observations).
Now that we have established ergodicity, we next study
the properties of the stationary distribution and find
that the modes correspond to MAP estimates.

We make a few mild assumptions about the model:

• The observed data Fisher information is non-
singular, i.e. I(η) � 0.

• For the Fisher information for z|x, we need it to be
non-singular and central limit theorem, law of large
number to hold, i.e. Eη0 [IX(η0)] � 0 and

sup
η

∣∣∣∣∣
1

n

n∑

i=1

Ixi
(η)− Eη0 [IX(η)]

∣∣∣∣∣→ 0 as n→∞

• We assume that 1
n

∑n
i=1∇η log p(xi; η) = 0 has at

least one solution, let η̂ be a solution.

These assumptions are reasonable. For example in
case of mixture models (or topic models), it just means
all component must be exhibited at least once and all
components are unique. The details of this case are
worked out in Appendix D. Also when the number of
parameters grow with the data, e.g., for topic mod-
els, the second assumption still holds. In this case, we
resort to corresponding result from high dimensional
statistics by replacing the law of large numbers with
Donsker’s theorem and everything else falls into place.

Consequently, we show ESCA converges weakly to a
distribution with mean equal to some root of the score
function (∇η log p(xi; η)) and thus a MAP fixed point
by borrowing the results known for SEM [25]. In par-
ticular, we have:

Theorem 1 Let the assumptions stated above hold
and η̃ be the estimate from ESCA. Then as the number
of i.i.d. data point goes to infinity, i.e. n → ∞, we
have
√
n(η̃ − η̂)

D→ N
(
0, I(η0)−1[I − F (η0)−1

)
(12)

where F (η0) = I + Eη0 [IX(η0)](I(η0) + Eη0 [IX(η0)]).

This result implies that SEM flocks around a sta-
tionary point under very reasonable assumptions and
tremendous computational benefits. Also, for such
complicated models, reaching a stationary point is the
best that most methods achieve anyway. Now we
switch gears to adopt ESCA for LDA and perform
some simple experimental evaluations.

3 ESCA for LDA

Topic modeling, and latent Dirichlet allocation (LDA)
[2] in particular, have become a must-have of analytics
platforms and consequently needs to scale to larger
and larger datasets. In LDA, we model each document
m of a corpus of M documents as a distribution θm
that represents a mixture of topics. There are K such
topics, and we model each topic k as a distribution
φk over the vocabulary of words that appear in our
corpus. Each document m contains Nm words wmn
from a vocabulary of size V , and we associate a latent
variable zmn to each of the words. The latent variables
can take one of K values indicating the topic for the
word. Both distributions θm and φk have a Dirichlet
prior, parameterized respectively with a constant α
and β. See Appendix B for more details.

3.1 Existing systems

Many of the scalable systems for topic modeling are
based on one of two core inference methods: the col-
lapsed Gibbs sampler (CGS) [12], and variational in-
ference (VI) [2] and approximations thereof [1]. To
scale LDA to large datasets, or for efficiency reasons,
we may need to distribute and parallelize them. Both
algorithms can be further approximated to meet such
implementation requirements.

Collapsed Gibbs Sampling In collapsed Gibbs
sampling the full conditional distribution of the latent
topic indicators given all the others is

p(zmn = k|z¬mn,w) ∝ (Dmk + α)
Wkwmn

+ β

Tk + βV
(13)

where Dmk is the number of latent variables in doc-
ument m that equal k, Wkv is the number of latent
variables equal to k and whose corresponding word
equals v, and Tk is the number of latent variables that
equal k, all excluding current zmn.

CGS is a sequential algorithm in which we draw la-
tent variables in turn, and repeat the process for sev-
eral iterations. The algorithm performs well statisti-
cally, and has further benefited from breakthroughs
that lead to a reduction of the sampling complexity
[37, 16]. This algorithm can be approximated to
enable distribution and parallelism, primarily in two
ways. One is to partition the data, perform one sam-
pling pass and then assimilate the sampler states, thus
yielding an approximate distributed version of CGS
(AD-LDA) [24]. Another way is to partition the data
and allow each sampler to communicate with a dis-
tributed central storage continuously. Here, each sam-
pler sends the differential to the global state-keeper
and receives from it the latest global value. A scalable

970

ESCA for Massively Parallel Inference

system built on this principle and leveraging inherent
sparsity of LDA is YahooLDA [30]. Further improve-
ment and sampling using alias table was incorporated
in lightLDA [39]. Contemporaneously, a nomadic dis-
tribution scheme and sampling using Fenwick tree was
proposed in F+LDA [38].

Variational Inference In variational inference
(VI), we seek to optimize the parameters of an ap-
proximate distribution that assumes independence of
the latent variables to find a member of the family
that is close to the true posterior. Typically, for LDA,
document-topic proportions and topic indicators are
latent variables and topics are parameter. Then, coor-
dinate ascent alternates between them.

One way to scale VI is stochastic variational infer-
ence (SVI) which employs SGD by repeatedly updat-
ing the topics via randomly chosen document subsets
[13]. Adding a Gibbs step to SVI introduces sparsity
for additional efficiency [19]. In some ways this is anal-
ogous to our S-step, but in the context of variational
inference, the conditional is much more expensive to
compute, requiring several rounds of sampling.

Another approach, CVB0, achieves scalability by ap-
proximating the collapsed posterior [31]. Here, they
minimize the free energy of the approximate distri-
bution for a given parameter γmnk and then use the
zero-order Taylor expansion [1].

γmnk ∝ (Dmk + α)× Wkwmn
+ β

Tk + β V
(14)

where Dmk is the fractional contribution of latent vari-
ables in document m for topic k, Wkv is the contri-
bution of latent variables for topic k and whose corre-
sponding word equals v, and Tk is the the contribution
of latent variables for topic k. Inference updates the
variational parameters until convergence. It is possible
to distribute and parallelize CVB0 over tokens [1]. VI
and CVB0 are the core algorithms behind several scal-
able topic modeling systems including Mr.LDA [40]
and the Apache Spark machine-learning suite.

Remark It is worth noticing that Gibbs sampling
and variational inference, despite being justified very
differently, have at their core the very same formu-
las (shown in a box in formula (13) and (14)). Each
of which are literally deciding how important is some
topic k to the word v appearing in document m by ask-
ing the questions: “How many times does topic k occur
in document m?”, “How many times is word v asso-
ciated with topic k?”, and “How prominent is topic k
overall?”. It is reassuring that behind all the beau-
tiful mathematics, something simple and intuitive is
happening. As we see next, ESCA addresses the same
questions via analogous formulas for SEM.

3.2 An ESCA Algorithm for LDA

To re-iterate, the point of using such a method for LDA
is that the parallel update dynamics of the ESCA gives
us an algorithm that is simple to parallelize, distribute
and scale. In the next section, we will evaluate how
it works in practice. For now, let us explain how we
design our SCA to analyze data.

We begin by writing the stochastic EM steps for LDA
(derivation is in Appendix B):

E-step: independently in parallel compute the condi-
tional distribution locally:

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(15)

S-step: independently in parallel draw zij from the
categorical distribution:

zmn ∼ Categorical(qmn1, ..., qmnK) (16)

M-step: independently in parallel compute the new
parameter estimates:

θmk =
Dmk + α− 1

Nm +Kα−K
φkv =

Wkv + β − 1

Tk + V β − V

(17)

We simulate these inference steps in ESCA, which is a
dynamical system with evolution function Φ : S −→ S
over the state space S. For LDA, the state space S is

S = Z −→ K×M×V (18)

where Z is the set of cell identifiers (one per token in
our corpus), K is a set of K topics, M is a set of M
document identifiers, and V is a set of V identifiers for
the vocabulary words.

The initial state s0 is the map defined as follows: for
every occurrence of the word v in document m, we
associate a cell z to the triple (kz,m, v) where kz is
chosen uniformly at random from K and independently
from kz′ for all z′ 6= z. This gives us

s0 = z 7→ (kz,m, v) (19)

We now need to describe the evolution function Φ.
First, assuming that we have a state s and a cell z, we
define the following distribution:

pz(k|s) ∝ (Dmk + α)× Wkv + β

Tk + β V
(20)

where Dmk =
∣∣∣
{
z | ∃v. s(z) = (k,m, v)

}∣∣∣,
Wkv =

∣∣∣
{
z | ∃m. s(z) = (k,m, v)

}∣∣∣, and

Tk =
∣∣∣
{
z | ∃m. ∃v. s(z) = (k,m, v)

}∣∣∣. Note that

we have chosen our local update rule slightly different
without an offset of −1 for the counts corresponding to

971

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

the mode of the Dirichlet distributions and requiring
α, β > 1. Instead, our local update rule allows us to
have the relaxed requirement α, β > 0 which is more
common for LDA inference algorithms.

Assuming that s(z) = (k,m, v) and that k′ is a sample
from pz (hence the name “stochastic” cellular automa-
ton) we define the local update function as:

φ(s, z) = (k′,m, v)

where s(z) = (k,m,v) and k′ ∼ pz(· |s)
(21)

That is, the document and word of the cell remain
unchanged, but we choose a new topic according to
the distribution pz induced by the state. We obtain the
evolution function of the stochastic cellular automaton
by applying the function φ uniformly on every cell.

Φ(s) = z 7→ φ(s, z) (22)

Finally, the SCA algorithm simulates the evolution
function Φ starting with s0. Of course, since LDA’s
complete data likelihood is in the exponential family,
we never have to represent the states explicitly, and
instead employ the sufficient statistics.

Our implementation has two copies of the count ma-
trices Di, W i, and T i for i = 0 or 1 (as in CGS or
CVB0, we do not compute the values Dik, Wkv, and
Tk but keep track of the counts as we assign topics to
the cells/latent variables). During iteration i of the
evolution function, we apply Φ by reading Di mod 2,
W i mod 2, and T i mod 2 and incrementing Di+1 mod 2,
W i+1 mod 2, and T i+1 mod 2) as we assign topics.

3.3 Advantages of ESCA for LDA

The positive consequences of ESCA as a choice for
inference on LDA are many:

• Our memory footprint is minimal since we only store
the data and sufficient statistics. In contrast to
MCMC methods, we do not store the assignments to
latent variables z. In contrast to variational meth-
ods, we do not store the variational parameters γ.
Further, variational methods require K memory ac-
cesses (one for each topic) per word. In contrast,
the S-step ensures we only have a single access (for
the sampled topic) per word. Such reduced pressure
on the memory bandwidth can improve performance
significantly for highly parallel applications.

• We can further reduce the memory footprint by com-
pressing the sufficient statistics with approximate
counters [20, 5]. This is possible because updating
the sufficient statistics only requires increments as in
Mean-for-Mode [32]. In contrast, CGS decrements
counts, preventing the use of approximate counters.

• Our implementation is lock-free (in that it does not
use locks, but assumes atomic increments) because
the double buffering ensures we never read or write

to the same data structures. There is less synchro-
nization, which at scale is significant.

• Finally, our algorithm is able to fully benefit from
Vose’s alias method [34] because homogeneous up-
date rule for SCA ensures that the cost for con-
structing the alias table is amortized across the cells.
To elaborate, the SCA update Equation (20) decom-
poses as

pz(k|s) ∝
[
Dmk

Wkv + β

Tk + β V

]
+

[
α
Wkv + β

Tk + β V

]
(23)

allowing us to treat it as a discrete mixture and di-
vide the sampling procedure into a two steps. First,
we toss a biased coin to decide which term of the
equation to sample, and second, we employ a spe-
cialized sampler depending on the chosen term. The
first term is extremely sparse (documents comprise
only a small handful of topics) and a basic sampling
procedure suffices. The second term is not sparse,
but is independent of the current document m and
depends only on the W and T matrices. Moreover,
as mentioned earlier, during iteration i, we will be
only reading values from non-changing W i mod 2,
and T i mod 2 matrices. As a result, at the start of
each iteration we can precompute, from the W and
T matrices, tables for use with Vose’s alias method,
which enables sampling from the second term in a
mere 3 CPU operations. Thus, the evolution for
ESCA is extremely efficient.

3.3.1 Connection to SGD

We can view ESCA as implicit SGD on MAP for LDA.
This connection alludes to the convergence rate of
ESCA. To illustrate, we consider θ only. As pointed
out in [36, 29], one EM step is:

θ+m = θm +M
∂ log p

∂θmk
which is gradient descent with a Frank-Wolfe update
and line search. Similarly, for ESCA using stochastic
EM, one step is

θ+mk =
Dnmk
Nm

=
1

Nm

Nm∑

n=1

δ(zmn = k)

Again vectorizing and re-writing as earlier:

θ+m = θm +Mg

where M = 1
Nm

[
diag(θm)− θmθTm

]
and g =

1
θmk

∑Nm

n=1 δ(zmn = k). The vector g can be shown
to be an unbiased noisy estimate of the gradient, i.e.

E[g] =
1

θmk

Ni∑

n=1

E[δ(zij = k)] =
∂ log p

∂θmk

Thus, a single step of SEM on our SCA is equivalent to
a single step of SGD. Consequently, we could further
embrace the connection to SGD and use a subset of the

972

ESCA for Massively Parallel Inference

Iteration
0 20 40 60 80 100

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8

-7.5

-7

-6.5
pubmed 1000

SCA
CGS
CVB0

(a) PubMed, K = 1000, α =
0.05, β = 0.1

Iteration
0 20 40 60 80 100

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8
wiki 1000

SCA
CGS
CVB0

(b) Wikipedia, K = 1000,
α = 0.05, β = 0.1

Time [min]
0 50 100 150 200 250

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8

-7.5

-7

-6.5
pubmed 1000

SCA
CGS
CVB0

(c) Pubmed, K = 1000, α =
0.05, β = 0.1

Time [min]
0 50 100 150 200 250

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8
wiki 1000

SCA
CGS
CVB0

(d) Wikipedia, K = 1000,
α = 0.05, β = 0.1

Figure 2: Evolution of log likelihood on Wikipedia and Pubmed over number of iterations and time.

data for the S and M steps, similar to incremental EM
[22]. Note that in the limit in which batches comprise
just a single token, the algorithm emulates a collapsed
Gibbs sampler. This interpretation strengthens the
theoretical justification for many existing approximate
Gibbs sampling approaches.

4 Experiments

To evaluate the strength and weaknesses of our al-
gorithm, we compare against parallel and distributed
implementations of CGS and CVB0. We also compare
our results to performance numbers reported in the
literature including those of F+LDA and lightLDA.

Software & hardware All three algorithms are im-
plemented in simple C++11. We implement mul-
tithreaded parallelization within a node using the
work-stealing Fork/Join framework, and the distri-
bution across multiple nodes using the process bind-
ing to a socket over MPI. We also implemented a
version of ESCA with a sparse representation for
the array D of counts of topics per documents and
Vose’s alias method to draw from discrete distribu-
tions. We run our experiments on a small clus-
ter of 8 Amazon EC2 c4.8xlarge nodes connected
through 10Gb/s Ethernet. Each node has a 36 vir-
tual threads per node. For random number genera-
tion we employ Intel R©Digital Random Number Gener-
ators through instruction RDRAND, which uses ther-
mal noise within the silicon to output a random stream
of bits at 3 Gbit/s, producing true random numbers.

Datasets We experiment on two public datasets,
both of which are cleaned by removing stop words and
rare words: PubMed abstracts and English Wikipedia.
To demonstrate scalability, run on 100 copies of En-
glish Wikipedia and a third proprietary dataset.

Dataset V M Tokens

PubMed 141,043 8,200,000 737,869,085
Wikipedia 210,233 6,631,176 1,133,050,514
Large ∼140,000 ∼3 billion ∼171 billion

Evaluation To evaluate the proposed method we use
predicting power as a metric by calculating the per-
word log-likelihood (equivalent to negative log of per-
plexity) on 10,000 held-out documents conditioned on
the trained model. We set K = 1000 to demonstrate
performance for a large number of topics. The hyper
parameters are set as α = 50/K and β = 0.1 as sug-
gested in [12]; other systems such as YahooLDA and
Mallet also use this as the default parameter setting.
The results are presented in Figure 2 and some more
experiments in Appendix G.

Finally, for the larger datasets, our implementation of
ESCA (only 300 lines of C++) processes more than 1
billion tokens per second (tps) by using a 20-node
cluster. In comparison, some of the best existing sys-
tems achieve 112 million tps (F+LDA, personal com-
munication) and 60 million tps (lightLDA) [39] using
more hardware. Detailed Appendix G Table 3)

5 Discussion

We have described a novel inference method for la-
tent variable models that simulates a stochastic cellu-
lar automaton. The equilibrium of the dynamics are
MAP fixed points and the algorithm has many de-
sirable computational properties: it is embarrassingly
parallel, memory efficient, and like HOGWILD! [27],
is virtually lock-free. Further, for many models, it en-
ables the use of approximate counters and the alias
method. Thus, we were able to achieve an order of
magnitude speed-up over the current state-of-the-art
inference algorithms for LDA with accuracy compara-
ble to collapsed Gibbs sampling.

In general, we cannot always guarantee the correct in-
variant measure [7], and found that parallelizing im-
properly causes convergence to incorrect MAP fixed
points. Even so, SCA is used for simulating Ising mod-
els in statistical physics [33]. Interestingly, in previous
work [15], it has been shown that stochastic cellular
automata are closely related to equilibrium statistical
models and the stationary distribution is known for a
large class of finite stochastic cellular automata.

973

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

References

[1] Arthur Asuncion, Max Welling, Padhraic Smyth,
and Yee Whye Teh. On smoothing and inference
for topic models. In Proc. Twenty-Fifth Con-
ference on Uncertainty in Artificial Intelligence,
UAI ’09, pages 27–34, Arlington, Virginia, USA,
2009. AUAI Press.

[2] David M. Blei, Andrew Y. Ng, and Michael I.
Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, March
2003.

[3] J. Canny. Gap: a factor model for discrete data.
In Proceedings of the 27th annual international
ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 122–129.
ACM, 2004.

[4] Gilles Celeux and Jean Diebolt. The sem al-
gorithm: a probabilistic teacher algorithm de-
rived from the em algorithm for the mixture prob-
lem. Computational statistics quarterly, 2(1):73–
82, 1985.

[5] Miklós Csűrös. Approximate counting with a
floating-point counter. In M. T. Thai and Sar-
taj Sahni, editors, Computing and Combina-
torics (COCOON 2010), number 6196 in Lec-
ture Notes in Computer Science, pages 358–
367. Springer Berlin Heidelberg, 2010. See also
http://arxiv.org/pdf/0904.3062.pdf.

[6] Rajarshi Das, Manzil Zaheer, and Chris Dyer.
Gaussian lda for topic models with word embed-
dings. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume
1: Long Papers), pages 795–804, Beijing, China,
July 2015. Association for Computational Lin-
guistics.

[7] Donald A. Dawson. Synchronous and asyn-
chronous reversible Markov systems. Canadian
mathematical bulletin, 17:633–649, 1974.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. Com-
mun. ACM, 51(1):107–113, January 2008.

[9] Anton K Formann and Thomas Kohlmann. La-
tent class analysis in medical research. Statistical
methods in medical research, 5(2):179–211, 1996.

[10] W. R. Gilks, S. Richardson, and D. J. Spiegel-
halter. Markov Chain Monte Carlo in Practice.
Chapman & Hall, 1995.

[11] Joseph Gonzalez, Yucheng Low, Arthur Gretton,
and Carlos Guestrin. Parallel gibbs sampling:
from colored fields to thin junction trees. In Inter-
national Conference on Artificial Intelligence and
Statistics, pages 324–332, 2011.

[12] T.L. Griffiths and M. Steyvers. Finding scientific
topics. Proceedings of the National Academy of
Sciences, 101:5228–5235, 2004.

[13] Matthew D. Hoffman, David M. Blei, Chong
Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research,
14:1303–1347, May 2013.

[14] Michael I. Jordan, Zoubin Ghahramani, Tommi S.
Jaakkola, and Lawrence K. Saul. An introduc-
tion to variational methods for graphical models.
Mach. Learn., 37(2):183–233, November 1999.

[15] Joel L. Lebowitz, Christian Maes, and Eugene R.
Speer. Statistical mechanics of probabilistic cel-
lular automata. Journal of statistical physics,
59:117–170, April 1990.

[16] Aaron Q. Li, Amr Ahmed, Sujith Ravi, and
Alexander J. Smola. Reducing the sampling com-
plexity of topic models. In 20th ACM SIGKDD
Intl. Conf. Knowledge Discovery and Data Min-
ing, 2014.

[17] Pierre-Yves Louis. Automates Cellulaires Proba-
bilistes : mesures stationnaires, mesures de Gibbs
associées et ergodicité. PhD thesis, Université des
Sciences et Technologies de Lille and il Politecnico
di Milano, September 2002.

[18] Jean Mairesse and Irène Marcovici. Around prob-
abilistic cellular automata. Theoretical Computer
Science, 559:42–72, November 2014.

[19] David Mimno, Matt Hoffman, and David Blei.
Sparse stochastic inference for latent dirichlet al-
location. In John Langford and Joelle Pineau, ed-
itors, Proceedings of the 29th International Con-
ference on Machine Learning (ICML-12), ICML
’12, pages 1599–1606, New York, NY, USA, July
2012. Omnipress.

[20] Robert Morris. Counting large numbers of events
in small registers. Commun. ACM, 21(10):840–
842, October 1978.

[21] R. Neal. Markov chain sampling methods for
dirichlet process mixture models. Technical Re-
port 9815, University of Toronto, 1998.

[22] Radford M Neal and Geoffrey E Hinton. A view
of the em algorithm that justifies incremental,
sparse, and other variants. In Learning in graph-
ical models, pages 355–368. Springer, 1998.

974

ESCA for Massively Parallel Inference

[23] A. U. Neumann and B. Derrida. Finite size scaling
study of dynamical phase transitions in two di-
mensional models: Ferromagnet, symmetric and
non symmetric spin glasses. J. Phys. France,
49:1647–1656, 08 1988.

[24] David Newman, Arthur Asuncion, Padhraic
Smyth, and Max Welling. Distributed algo-
rithms for topic models. J. Machine Learn-
ing Research, 10:1801–1828, December 2009.
http://dl.acm.org/citation.cfm?id=1577069.1755845.

[25] Søren Feodor Nielsen. The stochastic em al-
gorithm: estimation and asymptotic results.
Bernoulli, pages 457–489, 2000.

[26] Sam Patterson and Yee Whye Teh. Stochastic
gradient riemannian langevin dynamics on the
probability simplex. In Advances in Neural In-
formation Processing Systems, pages 3102–3110,
2013.

[27] B. Recht, C. Re, S.J. Wright, and F. Niu.
Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Peter Bartlett,
Fernando Pereira, Richard Zemel, John Shawe-
Taylor, and Kilian Weinberger, editors, Advances
in Neural Information Processing Systems 24,
pages 693–701, 2011.

[28] Herbert Robbins and Sutton Monro. A stochas-
tic approximation method. Ann. Math. Statist.,
22(3):400–407, 09 1951.

[29] Ruslan Salakhutdinov, Sam Roweis, and Zoubin
Ghahramani. Relationship between gradient and
em steps in latent variable models.

[30] Alexander Smola and Shravan Narayanamurthy.
An architecture for parallel topic models. Proc.
VLDB Endowment, 3(1-2):703–710, September
2010.

[31] Whye Yee Teh, David Newman, and Max Welling.
A collapsed variational Bayesian inference algo-
rithm for latent Dirichlet allocation. In Advances
in Neural Information Processing Systems 19,
NIPS 2006, pages 1353–1360. MIT Press, 2007.

[32] Jean-Baptiste Tristan, Joseph Tassarotti, and
Guy L. Steele Jr. Efficient training of LDA on a
GPU by Mean-For-Mode Gibbs sampling. In 32nd
International Conference on Machine Learning,
volume 37 of ICML 2015, 2015. Volume 37 of
the Journal in Machine Learning Research: Work-
shop and Conference Proceedings.

[33] Gérard Y. Vichniac. Simulating physics with cel-
lular automata. Physica D: Nonlinear Phenom-
ena, 10(1-2):96–116, January 1984.

[34] Michael D Vose. A linear algorithm for gen-
erating random numbers with a given distribu-
tion. Software Engineering, IEEE Transactions
on, 17(9):972–975, 1991.

[35] Max A Woodbury, Jonathan Clive, and Arthur
Garson. Mathematical typology: a grade of mem-
bership technique for obtaining disease definition.
Computers and biomedical research, 11(3):277–
298, 1978.

[36] Lei Xu and Michael I Jordan. On convergence
properties of the em algorithm for gaussian mix-
tures. Neural computation, 8(1):129–151, 1996.

[37] Limin Yao, David Mimno, and Andrew McCal-
lum. Efficient methods for topic model inference
on streaming document collections. In Proc. 15th
ACM SIGKDD Intl. Conf. Knowledge Discovery
and Data Mining, KDD ’09, pages 937–946, New
York, 2009. ACM.

[38] Hsiang-Fu Yu, Cho-Jui Hsieh, Hyokun Yun, SVN
Vishwanathan, and Inderjit S Dhillon. A scal-
able asynchronous distributed algorithm for topic
modeling. In Proceedings of the 24th International
Conference on World Wide Web, pages 1340–
1350. International World Wide Web Conferences
Steering Committee, 2015.

[39] Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jin-
liang Wei, Xun Zheng, Eric Po Xing, Tie-Yan Liu,
and Wei-Ying Ma. Lightlda: Big topic models
on modest computer clusters. In Proceedings of
the 24th International Conference on World Wide
Web, pages 1351–1361. International World Wide
Web Conferences Steering Committee, 2015.

[40] Ke Zhai, Jordan Boyd-Graber, Nima Asadi, and
Mohamad L Alkhouja. Mr. lda: A flexible large
scale topic modeling package using variational in-
ference in mapreduce. In Proceedings of the 21st
international conference on World Wide Web,
pages 879–888. ACM, 2012.

975

