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Abstract

Practitioners apply neural networks to increasingly complex
problems in natural language processing, such as syntactic
parsing and semantic role labeling that have rich output struc-
tures. Many such structured-prediction problems require de-
terministic constraints on the output values; for example, in
sequence-to-sequence syntactic parsing, we require that the se-
quential outputs encode valid trees. While hidden units might
capture such properties, the network is not always able to learn
such constraints from the training data alone, and practitioners
must then resort to post-processing. In this paper, we present
an inference method for neural networks that enforces deter-
ministic constraints on outputs without performing rule-based
post-processing or expensive discrete search. Instead, in the
spirit of gradient-based training, we enforce constraints with
gradient-based inference (GBI): for each input at test-time, we
nudge continuous model weights until the network’s uncon-
strained inference procedure generates an output that satisfies
the constraints. We study the efficacy of GBI on three tasks
with hard constraints: semantic role labeling, syntactic pars-
ing, and sequence transduction. In each case, the algorithm not
only satisfies constraints, but improves accuracy, even when
the underlying network is state-of-the-art.

1 Introduction
Suppose we have trained a sequence-to-sequence (seq2seq)
network (Cho et al. 2014; Sutskever, Vinyals, and Le 2014;
Kumar et al. 2016) to perform a structured prediction task
such as syntactic constituency parsing (Vinyals et al. 2015).
We would like to apply this trained network to novel, un-
seen examples, but still require that the network’s outputs
obey an appropriate set of problem specific hard-constraints;
for example, that the output sequence encodes a valid parse
tree. Enforcing these constraints is important because down-
stream tasks, such as relation extraction or coreference reso-
lution typically assume that the constraints hold. Moreover,
the constraints impart informative hypothesis-limiting restric-
tions about joint assignments to multiple output units, and

∗ corresponding authors: jaylee@cs.cmu.edu, michael.wick@
oracle.com
† Carnegie Mellon University, Pittsburgh, PA
‡ Oracle Labs, Burlington, MA.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

thus enforcing them holistically might cause a correct pre-
diction for one subset of the outputs to beneficially influence
another.

Unfortunately, there is no guarantee that the neural net-
work will learn these constraints from the training data alone,
especially if the training data volume is limited. Although in
some cases, the outputs of state-of-the-art (SOTA) systems
mostly obey the constraints for the test-set of the data on
which they are tuned, in other cases they do not. In practice,
the quality of neural networks are much lower when run on
data in the wild (e.g., because small shifts in domain or genre
change the underlying data distribution). In such cases, the
problem of constraint violations becomes more significant.

This raises the question: how should we enforce hard con-
straints on the outputs of a neural network? We could perform
expensive combinatorial discrete search over a large output
space, or manually construct a list of post-processing rules for
the particular problem domain of interest. Though, we might
do even better if we continue to “train” the neural network
at test-time to learn how to satisfy the constraints on each
input. Such a learning procedure is applicable at test-time
because learning constraints requires no labeled data: rather,
we only require a function that measures the extent to which
a predicted output violates a constraint.

In this paper, we present gradient-based inference (GBI),
an inference method for neural networks that strongly fa-
vors respecting output constraints by adjusting the network’s
weights at test-time, for each input. Given an appropriate
function that measures the extent of a constraint violation, we
can express the hard constraints as an optimization problem
over the continuous weights and apply back-propagation to
tune them. That is, by iteratively adjusting the weights so that
the neural network becomes increasingly likely to produce an
output configuration that obeys the desired constraints. Much
like scoped-learning, the algorithm customizes the weights
for each example at test-time (Blei, Bagnell, and McCallum
2002), but does so in a way to satisfy the constraints.

We study GBI on three tasks: semantic role labeling (SRL),
syntactic constituency parsing and a synthetic sequence trans-
duction problem and find that the algorithm performs favor-
ably on all three tasks. In outline, our contributions on this
paper are:

1. Propose a novel Gradient-Based Inference framework.



2. Verify that GBI performs well on various applications, thus
providing strong evidence for the generality of the method.

3. Examine GBI across wide range of reference model per-
formances and report its consistency.

4. Show that GBI also perform well on out-of-domain data.

For all the tasks, we find that GBI satisfies a large percent-
age of the constraints (up to 98%) and that in almost every
case (out-of-domain data, state-of-the art networks, and even
for the lower-quality networks), enforcing the constraints
improves the accuracy. On SRL, for example, the method
successfully injects truth-conveying side-information via con-
straints, improving SOTA network 1 by 1.03 F1 (Peters et al.
2018). This improvement happens to surpass a A*algorithm
for incorporating constraints while also being robust, in a
way that A*is not, to cases for which the side constraints are
inconsistent with the labeled ground-truth.

2 Constraint-aware inference in neural
networks

Our goal is to design an approximate optimization algorithm
that is similar in spirit to Lagrangian relaxation in that we
replace a complex constrained decoding objective with a
simpler unconstrained objective that we can optimize with
gradient descent (Koo et al. 2010; Rush et al. 2010; Rush and
Collins 2012), but is better suited for non-linear non-convex
optimization with global constraints that do not factorize over
the outputs. Although the exposition in this section revolves
around Lagrangian relaxation, we emphasize that the purpose
is merely to provide intuition and motivate design choices.

2.1 Problem definition and motivation
Typically, a neural network parameterized by weights W
is a function from an input x to an output y. The network
has an associated compatibility function Ψ(y;x,W )→ R+

that measures how likely an output y is given an input x
under weights W . The goal of inference is to find an output
that maximizes the compatibility function and this is usually
accomplished efficiently with feed-forward greedy-decoding.
In this work, we want to additionally enforce that the output
values belong to a feasible set or grammar Lx that in general
depends on the input. We are thus interested in the following
optimization problem:

max
y

Ψ(x,y,W )

s. t. y ∈ Lx
(1)

Simple greedy inference are no longer sufficient since the
outputs might violate the global constraints (i.e., y /∈ Lx).
Instead, suppose we had a function g(y,Lx) → R+ that
measures a loss between output y and a grammar Lx such
that g(y,Lx) = 0 if and only if there are no grammatical
errors in y. That is, g(y,Lx) = 0 for the feasible region
and is strictly positive everywhere else. For example, if the

1Since our submission, the previous SOTA (Peters et al. 2018)
in SRL on which we apply our technique has been advanced by 1.7
F1 points (Ouchi, Shindo, and Matsumoto 2018). However, this is
a training time improvement which is orthogonal to our work.

feasible region is a CFL, g could be the least errors count
function (Lyon 1974). We could then express the constraints
as an equality constraint and minimize the Lagrangian:

min
λ

max
y

Ψ(x,y,W ) + λg(y,Lx) (2)

However, this leads to optimization difficulties because there
is just a single dual variable for our global constraint, result-
ing intractable problem and thus leading to brute-force trial
and error search.

Instead, we might circumvent these issues if we optimize
over a model parameters rather than a single dual variable.
Intuitively, the purpose of the dual variables is to simply pe-
nalize the score of infeasible outputs that otherwise have a
high score in the network, but happen to violate constraints.
Similarly, network’s weights can control the compatibility of
the output configurations with the input. By properly adjust-
ing the weights, we can affect the outcome of inference by
removing mass from invalid outputs—in much the same way
a dual variable affects the outcome of inference. Unlike a sin-
gle dual variable however, the network expresses a different
penalty weight for each output. And, because the weights
are typically tied across space (e.g., CNNs) or time (e.g.,
RNNs) the weights are likely to generalize across related
outputs. As a result, lowering the compatibility function for a
single invalid output has the potential effect of lowering the
compatibility for an entire family of related, invalid outputs;
enabling faster search. In the next subsection, we propose a
novel approach that utilizes the amount of constraint viola-
tion as part of the objective function so that we can adjust the
model parameters to search for a constraint-satisfying output
efficiently.

2.2 Algorithm
Instead of solving the aforementioned impractical optimiza-
tion problem, we propose to optimize a “dual” set of model
parameters Wλ over the constraint function while regulariz-
ing Wλ to stay close to the originally learned weights W .
The objective function is as follows:

min
Wλ

Ψ(x, ŷ,Wλ)g(ŷ,Lx) + α‖W −Wλ‖2
where ŷ = argmax

y
Ψ(x,y,Wλ) (3)

Although this objective deviates from the original optimiza-
tion problem, it is reasonable because by definition of the
constraint loss g(·), the global minima must correspond to
outputs that satisfy all constraints. Further, we expect to find
high-probability optima if we initialize Wλ = W . Moreover,
the objective is intuitive: if there is a constraint violation in
ŷ then g(·) > 0 and the gradient will lower the compatibil-
ity of ŷ to make it less likely. Otherwise, g(·) = 0 and the
gradient of the energy is zero and we leave the compatibility
of ŷ unchanged. Crucially, the optimization problem yields
computationally efficient subroutines that we exploit in the
optimization algorithm.

To optimize the objective, the algorithm alternates maxi-
mization to find ŷ and minimization w.r.t. Wλ (Algorithm 1).
In particular, we first approximate the maximization step by
employing the neural network’s inference procedure (e.g.,



greedy decoding, beam-search, or Viterbi decoding) to find
the ŷ that approximately maximizes Ψ, which ignores the
constraint loss g. Then, given a fixed ŷ, we minimize the
objective with respect to the Wλ by performing stochastic
gradient descent (SGD). Since ŷ is fixed, the constraint loss
term becomes a constant in the gradient; thus, making it
easier to employ external black-box constraint losses (such
as those based on compilers) that may not be differentiable.
As a remark, note the similarity to REINFORCE (Williams
1992): the decoder outputs as actions and the constraint-loss
as a negative reward. However, GBI does not try to reduce
expected reward and terminates upon discovery of an output
that satisfies all constraints. Furthermore, GBI also works on
sequence-tagging problem, SRL (Section 4.1), where next
output does not depend on the current output, which is far
from REINFORCE setting.

Algorithm 1 Constrained inference for neural nets
Inputs: test instance x, input specific CFL Lx, pretrained
weights W
Wλ ←W #reset instance-specific weights
while not converged do
y← f(x;Wλ) #perform inference using weights Wλ

∇ ← g(y,Lx) ∂
∂Wλ

Ψ(x,y,Wλ) + α W−Wλ

‖W−Wλ‖2 #com-
pute constraint loss
Wλ ← Wλ − η∇ #update instance-specific weights
with SGD or a variant thereof

end while

3 Applications
There are multiple applications that involve hard-constraints
and we provide two illustrative examples that we later em-
ploy as case-studies in our experiments: SRL and syntactic
parsing. The former exemplifies a case in which external
knowledge encoded as hard constraints conveys beneficial
side information to the original task of interest while the
latter studies a case in which hard constraints are inherent
to the task of interest. Finally, we briefly mention sequence
transduction as framework in which constraints may arise.
Of course, constraints may in general arise for a variety of
different reasons, depending on the situation. We provide an
example-based case studies per application in Appendix A,
B.

3.1 Semantic Role Labeling
As a first illustrative example, consider SRL. SRL focuses
on identifying shallow semantic information about phrases.
For example, in the sentence “it is really like this, just look
at the bus sign” the goal is to tag the two arguments given
“is” as the verb predicate: “it” as its first argument and the
prepositional phrase “like this” as its second argument. Tradi-
tionally SRL is addressed as a sequence labeling problem, in
which the input is the sequence of tokens and the output are
BIO-encoded class labels representing both the regimentation
of tokens into contiguous segments and their semantic roles.

Note that the parse tree for the sentence might provide
constraints that could assist with the SRL task. In particu-

lar, each node of the parse tree represents a contiguous seg-
ment of tokens that could be a candidate for a semantic role.
Therefore, we can include as side-information constraints
that force the BIO-encoded class labeling to produce seg-
ments of text that each agree with some segment of text
expressed by a node in the parse tree. 2 To continue with our
example, the original SRL sequence-labeling might incor-
rectly label “really like this” as the second argument rather
than “like this.” Since according to the parse tree “really”
is part of the verb phrase, thus while the tree contains the
spans “is really like this” and “like this” it does not con-
tain the span “really like this.” The hope is that enforcing
the BIO labeling to agree with the actual parse spans would
benefit SRL. Based on the experiments, this is indeed the
case, and our hypothetical example is actually a real data-
case from our experiments, which we describe later. The
g(y,Lx) for SRL factorizes into per-span constraints gi.
For ith span si, if si is consistent with any node in the
parse tree, gi(si,Lx) = 0, otherwise gi(si,Lx) = 1/nsi
where nsi is defined as the number of tokens in si. Over-
all, Ψ(x, ŷ,Wλ)g(ŷ,Lx) =

∑k
i=1 g(si,Lx)Ψ(x, si,Wλ)

where k is number of spans on output ŷ.

3.2 Syntactic parsing
As a second illustrative example, consider a structured predic-
tion problem of syntactic parsing in which the goal is to input
a sentence comprising a sequence of tokens and output a tree
describing the grammatical parse of the sentence. Syntactic
parsing is a separate but complementary task to SRL. While
SRL focuses on semantic information, syntactic parsing fo-
cuses on identifying relatively deep syntax tree structures.
One way to model the problem with neural networks is to
linearize the representation of the parse tree and then em-
ploy the familiar seq2seq model (Vinyals et al. 2015). Let us
suppose we linearize the tree using a sequence of shift (s)
and reduce (r,r!) commands that control an implicit shift
reduce parser. Intuitively, these commands describe the exact
instructions for converting the input sentence into a complete
parse tree: the interpretation of the symbol s is that we shift
an input token onto the stack and the interpretation of the
symbol r is that we start (or continue) reducing (popping) the
top elements of the stack, the interpretation of a third symbol
! is that we stop reducing and push the reduced result back
onto the stack. Thus, given an input sentence and an output
sequence of shift-reduce commands, we can deterministically
recover the tree by simulating a shift reduce parser. For exam-
ple, the sequence ssrr!ssr!rr!rr! encodes a type-free
version of the parse tree (S (NP the ball) (VP is
(NP red))) for the input sentence “the ball is red”. It is
easy to recover the tree structure from the input sentence and
the output commands by simulating the shift reduce parser.
Of course in practice, reduce commands include the standard
parts of speech as types (NP, VP, etc).

Note that for output sequences to form a valid tree over the
input, the sequence must satisfy a number of constraints. First,
the number of shifts must equal the number of input tokens

2The ground-truth parse spans do not always agree with the SRL
spans, leading to imperfect side information.



mx, otherwise either the tree would not cover the entire input
sentence or the tree would contain spurious terminal symbols.
Second, the parser cannot issue a reduce command if there
are no items left on the stack. Third, the number of reduces
must be sufficient to leave just a single item, the root node,
on the stack. The constraint loss g(y,Lx) for this task simply
counts the errors of each of the three types. (Appendix C.2)

As a minor remark, note that other encodings of trees, such
as bracketing (of which the Penn Tree Bank’s S-expressions
are an example), are more commonly used as output rep-
resentations for seq2seq parsing (ibid). However, the shift-
reduce representation described in the foregoing paragraphs
is isomorphic to the bracketing representations and as we
get similar model performance to single seq2seq mode on
the same data (ibid.), we chose the former representation to
facilitate constraint analysis. Although output representations
sometimes matter, for example, BIO vs BILOU encoding
of sequence labelings, the difference is usually minor (Rati-
nov and Roth 2009), and breakthroughs in sequence labeling
have been perennially advanced under both representations.
Thus, for now, we embrace the shift reduce representation as
a legitimate alternative to bracketing, pari passu.

3.3 Synthetic sequence transduction
Finally, although not a specific application per se, we also
consider sequence transduction as it provides a framework
conducive to studying simple artificial languages with ap-
propriately designed properties. A sequence transducer T :
LS → LT is a function from a source sequence to a target se-
quence. As done in previous work, we consider a known T to
generate input/output training examples and train a seq2seq
network to learn T on that data (Grefenstette et al. 2015).
The constraint is simply that the output must belong to LT
and also respect problem-specific conditions that may arise
from the application of T on the input sentence. We study a
simple case in Section 4.3.

4 Experiments
In this section we study our algorithm on three different tasks:
SRL, syntactic constituency parsing and a synthetic sequence
transduction task. All three tasks require hard constraints, but
they play a different role in each. In the sequence transduction
tasks they force the output to belong to a particular input-
dependent regular expression, in SRL, constraints provide
side-information about possible true-spans and in syntactic
parsing, constraints ensure that the outputs encode valid trees.
While the SRL task involves more traditional recurrent neural
networks that have exactly one output per input token, the
parsing and transduction tasks provide an opportunity to
study the algorithm on various seq2seq networks .

We are interested in answering the following questions
(Q1) how well does the neural network learn the constraints
from data (Q2) for cases in which the network is unable
to learn the constraints perfect, can GBI actually enforce
the constraints (Q3) does GBI enforce constraints without
compromising the quality of the network’s output. To more
thoroughly investigate Q2 and Q3, we also consider: (Q4) is
the behavior of the method sensitive to the reference network

performance, and (Q5) does GBI also work on out-of-domain
dataset. Q3 is particularly important because we adjust the
weights of the network at test-time and this may lead to
unexpected behavior. Q5 deals with our original motivation
of using structured prediction to enhance performance on the
out-of-domain data.

To address various proposed questions, we define some ter-
minologies to measure how well the model is doing in terms
of constraints. To address (Q1) we measure the failure-rate
(i.e., the ratio of test sentences for which the network infers
an output that fails to fully satisfy the constraints). To address
(Q2) we evaluate our method on the failure-set (i.e., the set
of output sentences for which the original network produces
constraint-violating outputs) and measure our method’s con-
version rate; that is, the percentage of failures for which our
method is able to completely satisfy the constraints (or “con-
vert”). Finally, to address (Q3), we evaluate the quality (e.g.,
accuracy or F1) of the output predictions on the network’s
failure-set both before and after applying our method.

4.1 Semantic Role Labeling
We employ the AllenNLP (Gardner et al. 2017) SRL network
with ELMo embeddings, which is essentially a multi-layer
highway bi-LSTM that produces BIO output predictions
for each input token (Peters et al. 2018). For data we use
OntoNotes v5.0, which has ground-truth for both SRL and
syntactic parsing (Pradhan et al. 2013). We evaluate GBI on
the test-set (25.6k examples), out of which consistent parse in-
formation is available for 81.25% examples (we only include
side-information in terms of constraints for this subset).

We repeat the same experimental procedure over multiple
networks, SRL-X, with varying amounts (X%) of training
dataset. From Table 1, we see that GBI is able to convert
42.25 % of failure set, and this boosts the overall F1 measure
by 1.23 point over the SOTA network (SRL-100) that does
not incorporate the constraints (they report 84.6 F1, we obtain
a similar 84.4 F1 with their network, and achieve 85.63 after
enforcing constraints with our inference). Further, to address
(Q1) we measure the sentence-level failure rate as well as
span-level disagreement rate (i.e., the ratio of predicted spans
in a sentence that disagree with the spans implied by the true
syntactic parse of the sentence). To address (Q2) we evalu-
ate our method on the failure set (i.e., the set of sentences
for which disagreement rate is nonzero) and measure our
method’s avg. disagreement rate. Finally, to address (Q3),
we evaluate the quality (F1 and Exact Match) of the output
predictions on the network’s failure-set both before and af-
ter applying our method. From Table 1, we can see that by
applying GBI on SRL-100, the avg. disagreement rate on
failure set goes down from 44.85% to 24.92% which results
in an improvement of 11.7 F1 and 19.90% in terms of exact
match on the same set. These improvements answers Q1-3
favorably.

To enforce constraints during inference, He et al. proposed
to employ constrained-A*decoding. For the sake of fair com-
parison with GBI, we consider A*decoding, as used in (He
et al. 2017) and report results for SRL-X networks. We see
from Table 1, that GBI procedure consistently out-performs



Network Failure Inference Conv

Failure set Test set
Average (%) F1 Exact Match F1

rate(%) rate(%) Disagreement (%)
before after before after before after before after

SRL-100 9.82 GBI 42.25 44.85 24.92 48.00 59.70 (+11.7) 0.0 19.90 84.40 85.63 (+1.23)
A* 40.40 33.91 48.83 (+0.83) 13.79 84.51 (+0.11)

SRL-70 10.54 GBI 46.22 45.54 23.02 47.81 59.37 (+11.56) 0.0 19.57 83.55 84.83 (+1.28)
A* 44.42 32.32 50.49 (+2.68) 16.12 83.90 (+0.35)

SRL-40 11.06 GBI 47.89 45.71 22.42 46.53 58.83 (+12.3) 0.0 19.45 82.57 84.03 (+1.46)
A* 44.74 32.17 46.53 (+2.88) 15.15 82.98 (+0.41)

SRL-10 14.15 GBI 44.28 47.14 24.88 44.19 54.78 (+10.59) 0.0 15.28 78.56 80.18 (+1.62)
A* 43.66 32.80 45.93 (+1.74) 12.28 78.87 (+0.31)

SRL-1 21.90 GBI 52.85 50.38 21.45 37.90 49.00 (+11.10) 0.0 12.83 67.28 69.97 (+2.69)
A* 48.96 30.28 41.59 (+3.69) 11.25 67.97 (+0.69)

Table 1: Comparison of the GBI vs. A*inference procedure for SRL. We report avg. disagreement rate, F1-scores and exact
match for failure set (columns 5-10) and F1-score for whole test set (last 2 columns). Also we report performances on wide range
of reference models SRL-X, where X denotes % of dataset used for training. We employ Viterbi decoding as a base inference
strategy (before) and apply GBI (after) in combination with Viterbi.

name F1 hyper-parameters data
BS-9 greedy hidden layers dropout (%)

Net1 87.58 87.31 128 3 0.5 100%
Net2 86.63 86.54 128 3 0.2 100%
Net3 81.26 78.32 172 3 no 100%
Net4 78.14 74.53 128 3 no 75%
Net5 71.54 67.80 128 3 no 25%

Table 2: Parsing Networks with various performances (BS-9
means beam size 9). Net1,2 are trained on GNMT seq2seq
model whereas Net3-5 are trained on lower-resource and
simpler seq2seq model to test GBI on wide range of model
performances.

Net Failure Conv F1 (Failure set) F1 (whole test)
(n/2415) rate before after before after

Net1 187 93.58 71.49 77.04 87.31 87.93
Net2 287 89.20 73.54 79.68 86.54 87.57

Table 3: Evaluation of the GBI on syntactic parsing using
GNMT seq2seq. Note that GBI without beam search per-
forms higher than BS-9 on Table 2.

A*decoding on all evaluation metrics, thus, proving superior-
ity of our approach.

4.2 Syntactic parsing
We now turn to a different task and network: syntactic con-
stituency parsing. We investigate the behavior of the con-
straint inference algorithm on the shift-reduce parsing task
described in Section 3. We transform the Wall Street Journal
(WSJ) portion of the Penn Tree Bank (PTB) into shift-reduce
commands in which each reduce command has a phrase-type
(e.g., noun-phrase or verb-phrase) (Marcus et al. 1999). We
employ the traditional split of the data with section 22 for dev,
section 23 for test, and remaining sections 01-21 for training.
We evaluate on the test set with evalb3 F1.

3http://nlp.cs.nyu.edu/evalb/

Net Infer Failure Conv F1 (Failure set)
method (n/2415) rate before after

Net3

Greedy 317 79.81 65.62 68.79 (+3.14)
Beam 2 206 87.38 66.61 71.15 (+4.54)
Beam 5 160 87.50 67.5 71.38 (+3.88)
Beam 9 153 91.50 68.66 71.69 (+3.03)

Net4

Greedy 611 88.05 62.17 64.49 (+2.32)
Beam 2 419 94.27 65.40 66.65 (+1.25)
Beam 5 368 92.66 67.18 69.4 (+2.22)
Beam 9 360 93.89 67.83 70.64 (+2.81)

Net5

Greedy 886 69.86 58.47 60.41 (+1.94)
Beam 2 602 82.89 60.45 61.35 (+0.90)
Beam 5 546 81.50 61.43 63.25 (+1.82)
Beam 9 552 80.62 61.64 62.98 (+1.34)

Table 4: Evaluation of the GBI on simpler, low-resource
seq2seq networks. In here, we also evaluate whether GBI can
be used in combination with different inference techniques:
greedy and beam search of various width.

In each experiment, we learn a seq2seq network on a train-
ing set and then evaluate the network directly on the test
set using a traditional inference algorithm to perform the
decoding (either greedy decoding or beam-search).

In order to study our algorithm on a wide range of accuracy
regimes (section 4.4), we train many networks with different
hyper-parameters producing models of various quality, from
high to low, using the standard split of the WSJ portion of the
PTB. In total, we train five networks Net1-5 for this study,
that we describe below.

We train our two best baseline models (Net1,2) using a
highly competitive seq2seq architecture for machine trans-
lation, GNMT (Wu et al. 2016) with F1 scores, 86.78 and
87.33, respectively. And, to study wider range of accuracies,
we train a simpler architecture with different hyper param-
eters and obtain nets ( Net3-5). For all models, we employ
Glorot initialization, and basic attention (Bahdanau, Cho, and
Bengio 2014). See Table 2 for a summary of the networks,
hyper-parameters, and their performance.

We report the behavior of the constraint-satisfaction



method on Table 3 for Net1-2, and on Table 4 for Net3-
5. Across all the experimental conditions (Table 3, 4), the
conversion rates are high, often above 80 and sometimes
above 90 supporting Q2. Note that beam search alone can
also increase constraint satisfaction with conversion rate go-
ing as high as 51.74% (164/317) in case of Net3 with beam
size 9. However, as the quality of the model increases, the
conversion rate became minuscule; in case of Net1,2 the con-
version rate was less than 14% with beam 9; Net1 converted
26 out of 187 and Net2 converted 1 out of 287 instances from
failure set.

In order to address question Q3—the ability of our ap-
proach to satisfy constraints without negatively affecting
output quality—we measure the F1 scores on the failure-sets
both before and after applying the constraint satisfaction al-
gorithm. Since F1 is only defined on valid trees, we employ
heuristic post-processing to ensure all outputs are valid.

Note that an improvement on the failure-set guarantees an
improvement on the entire test-set since our method produces
the exact same outputs as the baseline for examples that do
not initially violate any constraints. Consequently, for exam-
ple, the GNMT network improves (Net2) on the failure-set
from 73.54 to 79.68 F1, resulting in an overall improvement
from 86.54 to 87.57 F1 (entire test-set). These improvements
are similar to those we observe in the SRL task, and provide
additional evidence for answering Q1-3 favorably.

We also measure how many iterations of our algorithm it
takes to convert the examples that have constraint-violations.
Across all conditions, it takes 5–7 steps to convert 25% of the
outputs, 6–20 steps to convert 50%, 15–57 steps to convert
80%, and 55–84 steps to convert 95%.

4.3 Simple Transduction Experiment
In our final experiment we focus on a simple sequence trans-
duction task in which we find that despite learning the train-
ing data perfectly, the network fails to learn the constraint in
a way that generalizes to the test set.

For our task, we choose a simple transducer, similar to
those studied in recent work (Grefenstette et al. 2015). The
source language LS is (az|bz)? and the target language
LT is (aaa|zb)?. The transducer is defined to map oc-
currences of az in the source string to aaa in the target
string, and occurrences of bz in the source string to zb in
the target string. For example, T (bzazbz) 7→ zbaaazb.
The training set comprises 1934 sequences of length 2–20
and the test set contain sentences of lengths 21-24. We em-
ploy shorter sentences for training to require generalization
to longer sentences at test time.

We employ a 32 hidden unit single-layered, attention-less,
seq2seq LSTM in which the decoder LSTM inputs the fi-
nal encoder state at each decoder time-step. The network
achieves perfect train accuracy while learning the rules of the
target grammar LT perfectly, even on the test-set. However,
the network fails to learn the input-specific constraint that the
number of a’s in the output should be three times the number
of a’s in the input. This illustrates how a network might rote-
memorize constraints rather than learn the rule in a way that
generalizes. Thus, enforcing constraints at test-time is impor-
tant. To satisfy constraints, we employ GBI with a constraint

loss g, a length-normalized quadratic (3xa − ya)2/(m+ n)
that is zero when the number of a’s in the output (ya) is
exactly three times the number in the input (xa) with m,n
denoting input, output, respectively. GBI achieves a conver-
sion rate of 65.2% after 100 iterations, while also improving
the accuracy on the failure-set from 75.2% to 82.4%. This
synthetic experiment provides additional evidence in support
of Q2 and Q3, on a simpler small-capacity network.

4.4 GBI on wide range of reference models
The foregoing experimental results provide evidence that
GBI is a viable method for enforcing constraints. However,
we hitherto study GBI on high quality reference networks
such as SRL-100. To further bolster our conclusions, we
now direct our investigation towards lower quality networks
to understand GBI’s viability under a broader quality spec-
trum. We ask, how sensitive is GBI to the reference network’s
performance (Q4)? To this end, we train poorer quality net-
works by restricting the amount of available training data or
employing simpler architectures.

For SRL, we simulate low-resource models by limiting the
training data portion to 1%, 10%, 40%, and 70% resulting
in F1 score range of 67.28-83.55. Similarly, for syntactic
parsing, we train additional low-quality models Net3-5 with
a simpler uni-directional encoders/decoders, and on different
training data portion of 25%, 75%, and 100%. (Table 2). We
evaluate GBI on each of them in Table 1, 4 and find further
evidence in support of favorable answers to Q2 (satisfying
constraints) and Q3 (improving F1 accuracy) by favorably
answering Q4. Moreover, while not reported fully due to page
limits, we examined both tasks over 20 experiments with dif-
ferent baseline networks in combination to different inference
strategies, and we found GBI favorable in all but one case
(but by just 0.04 compared to employing post-processing).

We also study whether GBI is compatible with better un-
derlying discrete search algorithms, in particular beam search
for seq2seq. As we seen in column 2 of Table 4, that al-
though beam-search improves the F1 score and reduces the
percentage of violating constraints, GBI further improves
over beam-search when using the latter in the inner-loop as
the decoding procedure. In conclusion, improving the under-
lying inference procedure has the effect of decreasing the
number of violating outputs, but GBI is still very much ef-
fective on this increasingly small set, despite it intuitively
representing more difficult cases that even eludes constraint
satisfaction on beam search inference.

4.5 Experiments on out-of-domain data
Previously, we saw how GBI performs well even when the
underlying network is of lower quality. We now investigate
GBI on actual out-of-domain data for which the model qual-
ity can suffer. For SRL, we train a SOTA network with ELMo
embedding on the NewsWire (NW) section of the OntoNotes
v5.0 English PropBank corpus and then test on the other gen-
res provided in the corpus: BC, BN, PT, TC, WB. The failure
rate on the within genre data (test set of NW) is 18.10%. We
can see from Table 5, the failure rate for the NW trained
SRL network in general is higher for out-of-genre data with
highest being 26.86% for BC(vs. 18.10% NW). Further, by



Syntactic Parsing SRL
Genre Failure Conversion F1 on failure set Failure Conversion F1 on failure set

rate (%) rate (%) before after rate (%) rate (%) before after
Broadcast Conversation (BC) 19.3 98.8 56.4 59.0 (+2.6) 26.86 53.88 39.72 52.4 (+12.68)

Broadcast News (BN) 11.7 98.1 63.2 68.8 (+5.6) 18.51 55.19 39.28 50.58 (+11.3)
Pivot Corpus (PT) 9.8 97.8 71.4 75.8 (+4.4) 10.01 62.34 47.19 63.69 (+16.5)

Telephone Conversation (TC) 10.1 86.2 56.9 57.6. (+0.7) 19.09 54.62 47.7 58.04 (+10.34)
Weblogs (WB) 17.6 95.3 62.0 63.2 (+1.2) 20.32 44.13 47.6 57.39 (+9.39)

Table 5: Evaluation of syntactic parser and SRL system on out-of-domain data. F1 scores are reported on the failure set. SRL
model was trained on NW and the syntactic parser was trained on WSJ Section on OntoNote v5.0. Except PT, which is new and
old Testament, all failure rate on out-domain data is higher than that of in-domain (11.9% for parsing and 18.1% for SRL) as
suspected. The table shows that GBI can be successfully applied to resolve performance degradation on out-of-domain data.

enforcing constraints, we see significant gains on failure set
in terms of F1 score across all genres (ranging from 9.39-16.5
F1), thus, providing additional evidences for answering Q5.

As we did for SRL, we train a GMNT seq2seq model on
the WSJ NW section in OntoNotes v5.0 Treebank 4 which
shares the same genre classification with PropBank. The F1
on the within-genre data (test set of WSJ) is 85.03, but the F1
on these genres is much lower, ranging from the mid-forties
on BC (46.2–78.5 depending on the subcategory) to the low-
eighties on BN (68.3–81.3. depending on the subcategory).
Indeed, we find that overall the F1 is lower and in some
cases, like WB, the failure rate is much higher (17.6% for
WB vs. 11.9% for WSJ). Following the same experimental
protocol as on the PTB data, we report the results in Table 5
(aggregating over all subcategories in each genre). We see
that across all genres, the algorithm has high conversion rates
(sometimes close to 100%), and that in each case, enforcing
the constraints improves the F1. Again, we find support for
Q2, Q3 and Q5.

4.6 Robustness and Runtime analysis
We perform extra analysis on robustness and runtime for
SRL in comparison with competing constrained-A*decoding
method. In Appendix D, we introduce case study of noisy
constraints where A*performs worse than the baseline
whereas GBI still improves it significantly, thus, showcasing
its robustness to noisy constraints.

For runtime, GBI is slightly faster than A*while the differ-
ence in terms of the runtime is unclear on smaller evaluation
sets (see Appendix E). In the case study of noisy constraints,
GBI is similar in runtime to A*, but the runtime comparison is
not important in the noisy constraint setting as A*with noisy
constraints simply hurts whereas GBI shows comparable
gains with the noise-free constraint setting.

5 Related work
Recent work has considered applying neural networks to
structured prediction; for example, structured prediction en-
ergy networks (SPENs) (Belanger and McCallum 2016).
SPENs incorporate soft-constraints via back-propagating an
energy function into “relaxed” output variables. In contrast,
we focus on hard-constraints and back-propagate into the

4The PTB (40k instances) and OntoNotes (30k instances) cover-
age of WSJ are slightly different.

weights that subsequently control the original non-relaxed
output variables via inference. Separately, there has been in-
terest in employing hard constraints to harness unlabeled
data in training-time for simple classifications (Hu et al.
2016). Our work instead focuses on enforcing constraints
at inference-time. More specifically, for SRL, previous work
for enforcing syntactic and SRL specific constraints have
focused on constrained A*decoding (He et al. 2017) or inte-
ger linear programming (Punyakanok, Roth, and Yih 2008).
For parsing, previous work in enforcing hard constraints has
focused on post-processing (Vinyals et al. 2015) or building
them into the decoder via sampling (Dyer et al. 2016) or
search constraints (Wiseman and Rush 2016).

Finally, as previously mentioned, our method highly re-
sembles dual decomposition and more generally Lagrangian
relaxation for structured prediction (Koo et al. 2010; Rush
et al. 2010; Rush and Collins 2012). In such techniques, it
is assumed that a computationally efficient inference algo-
rithm can maximize over a superset of the feasible region
(this assumption parallels our case because unconstrained
inference in the neural network is efficient, but might violate
constraints). Then, the method employs gradient descent to
concentrate this superset onto the feasible region. However,
these techniques are not directly applicable to our non-linear
problem with global constraints.

6 Conclusion

We presented an algorithm for satisfying constraints in neural
networks that avoids combinatorial search, but employs the
network’s efficient unconstrained procedure as a black box
to coax weights towards well-formed outputs. We evaluated
the algorithm on three tasks including SOTA SRL, seq2seq
parsing and found that GBI can successfully convert fail-
ure sets while also boosting the task performance. Accuracy
in each of the three tasks was improved by respecting con-
straints. Additionally, for SRL, we employed GBI on top
of a model trained with similar constraint enforcing loss as
GBI’s (Mehta*, Lee*, and Carbonell 2018), and observe that
the test-time optimization of GBI still significantly improves
the model output whereas A*does not. We believe this is be-
cause GBI enables to search proximity of the provided model
weights while theoretical analysis on this hypothesis is left
as a future work.
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Appendix
A GBI vs. Constrained decoding

In Table 8 of Appendix B, we provide an example data-case that shows how our algorithm solves the initially violated shift-reduce
parse output. For simplicity we omit the phrase-types of constituency parsing and display only on the shift (s), reduce (r) and
stop reducing commands (!), and color them red if there is an error. The algorithm satisfies the constraint in just 12 iterations,
and this results in a perfectly correct parse. What is interesting about this example is that the original network commits a parsing
mistake early in the output sequence. This type of error is problematic for a naive decoder that greedily enforces constraints at
each time-step. The reason is that the early mistake does not create a constraint violation until it is too late, at which point errors
have already propagated to future time-steps and the greedy decoder must shift and reduce the last token into the current tree,
creating additional spurious parse structures. In contrast, our method treats the constraints holistically, and uses it to correct
the error made at the beginning of the parse. See Table 6 for a comparison of how the methods fix the constraints. Specifically,
the constraint violation is that there were not enough shift and reduce commands to account for all the tokens in the sentence.
Rather than fixing the constraint by inserting these extra commands at the end of the sequence as the greedy decoder must do,
GBI inserts them at the beginning of the sequence where the initial mistake was made, thereby correcting the initial mistake.
Moreover, this correction propagates to a mistake made later in the sequence (viz., the the sequence of three reduces after the
four shifts) and fixes them too. This example provides evidence that GBI can indeed enforce constraints holistically and that
doing so improves the output in a global sense.

〈“ So it ’s a very mixed bag . ”〉 −→ sssr!ssssrr!srrr!rr!ssrrrrrr!

inference method output
unconstrained-decoder ssr!sr!ssssrrr! rr!ssrrrrrr!

constrained-decoder ssr!sr!ssssrrr! rr!ssrrrrrr!srr!
our method sssr!ssssrr!srrr!rr!ssrrrrrr!

true parse sssr!ssssrr!srrr!rr!ssrrrrrr!

Table 6: A shift-reduce example for which the method successfully enforces constraints. The initial unconstrained decoder
prematurely reduces “So it” into a phrase, missing the contracted verb “is.” Errors then propagate through the sequence
culminating in the final token missing from the tree (a constraint violation). The constrained decoder is only able to deal with
this at the end of the sequence, while our method is able to harness the constraint to correct the early errors.

B Example-based case study

〈“ it is really like this , just look at the bus signs . ”〉 −→ B-ARG1 B-V B-ARGM-ADV B-ARG2 I-ARG2 O O · · · O

iteration output loss accuracy
0 B-ARG1 B-V B-ARG2 I-ARG2 I-ARG2 O O O O O O O O 0.012 50.0%
6 B-ARG1 B-V B-ARG2 I-ARG2 I-ARG2 O O O O O O O O 0.049 50.0%
7 B-ARG1 B-V B-ARGM-ADV B-ARG2 I-ARG2 O O O O O O O O 0.00 100.0%

Table 7: A semantic role labeling example for which the method successfully enforces syntactic constraints. The initial output
has inconsistent span for token "really like this". Enforcing the constraint not only corrects the number of agreeing spans, but
also changes the semantic role "B-ARG2" to "B-ARGM-ADV" and "I-ARG2" to "B-ARG2"..

〈“ So it ’s a very mixed bag . ”〉 −→ sssr!ssssrr!srrr!rr!ssrrrrrr!

iteration output loss accuracy
0 ssr!sr!ssssrrr!rr!ssrrrrrr! 0.0857 33.3%

11 ssr!sr!ssssrrr!rr!ssrrrrrr! 0.0855 33.3%
12 sssr!ssssrr!srrr!rr!ssrrrrrr! 0.0000 100.0%

Table 8: A shift-reduce example for which the method successfully enforces constraints. The initial output has only nine shifts,
but there are ten tokens in the input. Enforcing the constraint not only corrects the number of shifts to ten, but changes the
implied tree structure to the correct tree.



azazbzazbzbzazbzbzbzbzbz −→ aaaaaazbaaazbzbaaazbzbzbzbzb

iteration output loss accuracy
0 aaaaaazbaaazbaaazbzbzbzbaaazb 0.2472 66.7
1 aaaaaazbaaazbaaazbzbzbzbaaazb 0.2467 66.7
2 aaaaaazbaaazbaaazbzbzbzbaaazb 0.2462 66.7
3 aaaaaazbaaazbzbaaazbzbzbzbzb 0.0 100.0

Table 9: A sequence transduction example for which enforcing the constraints improves accuracy. Red indicates errors.

C Constraint functions
Here we define the specific constraint loss function g(y,Lx) for each task. Note that a common theme is that we normalize
the constraint loss by the length of the sequence so that it does not grow unbounded with sequence size. We recommend this
normalization as we found that it generally improves performance.

C.1 Semantic Role labeling
The g(y,Lx) for SRL factorizes into per-span constraints gi. For ith span si, if si is consistent with any node in the parse tree,
gi(si,Lx) = 0, otherwise gi(si,Lx) = 1/nsi where nsi is defined as the number of tokens in si. Overall,

Ψ(x, ŷ,Wλ)g(ŷ,Lx) =
k∑
i=1

g(si,Lx)Ψ(x, si,Wλ)

where k is number of spans on output ŷ.
More precisely, for a span s to be “consistent with a parse node” we mean the following. Let ti ∈ T be a node in the parse tree

T and let sti be the span of text implied by the descendents of the node ti. Let ST = {sti} be the set of spans implied by all nodes
in the parse tree T . We say that a span of text s is consistent with the parse tree T if and only if s ∈ ST .

C.2 Syntactic Parsing
Letmx, n be number of input, output tokens, respectively, ctni=1(b(i)) be the function that counts the number of times proposition
b(i) is true for i = 1, . . . , n. Now, define the following loss

g(y,Lx) =
1

mx + n

{
|mx − ctni=0(yi = s)|+

n∑
i

max
(
0, ctij=0(yj = r)− ctij=0(yj ∈ {s, !})

)}
.

The first term provides loss when the number or shifts equals the number of input tokens, the second term provides loss when
attempting to reduce an empty stack and the third term provides loss when the number of reduces is not sufficient to attach every
lexical item to the tree.

C.3 Transduction
For the aforementioned transducer we chose for the experiment, LS is (az|bz)? and the target language LT is (aaa|zb)?.
The transducer is defined to map occurrences of az in the source string to aaa in the target string, and occurrences of bz in the
source string to zb in the target string.

For the provided transduction function, the number of a’s in the output should be three times the number of a’s in the input.
To express this constraint, we define following constraint loss g, a length-normalized quadratic

g(y,Lx) = (3xa − ya)2/(m+ n)

that is zero when the number of a’s in the output (ya) is exactly three times the number in the input (xa) with m,n denoting
input length, output length, respectively.

D Analyzing the behavior of different inference procedures in the presence of noisy constraints
Table 10 reports the performance of GBI and A*in the presence of noisy constraints. We can see that the overall performance
(F1-score) for A*drops drastically (−6.92) in the presence of noisy constraints while we still see gains with GBI (+0.47). We
further analyze the improvement of GBI by looking at the precision and recall scores individually. We see that recall drops
slightly for GBI which suggests that noisy constraints does inhibit predicting actual argument spans. On the other hand, we
see that precision goes up significantly. After analyzing predicted argument spans, we noticed that GBI prefers to predict no
argument spans instead of incorrect spans in the presence of noisy constraints which leads to an increase in precision. Thus, GBI
provides flexibility in terms of strictness with enforcing constraints which makes it robust to noisy constraints. On the other hand,
constrained-A*decoding algorithm is too strict when it comes to enforcing noisy constraints resulting in significant drop both in
precision and recall.



Decoding Precision Recall F1-score Exact Match (%)
Viterbi 84.03 84.78 84.40 69.37

Noisy constraints
A* 78.13 (-5.90) 76.85 (-7.93) 77.48 (-6.92) 58.30 (-11.70)

GBI 85.51 (+1.48) 84.25 (-0.53) 84.87 (+0.47) 68.45 (-0.92)
Noise-free constraints

A* 84.19 (+0.16) 84.83 (+0.05) 84.51 (+0.11) 70.52 (+1.15)
GBI 85.39 (+1.36) 85.88 (+1.10) 85.63 (+1.23) 71.04 (+1.67)

Table 10: Comparison of different inference procedures: Viterbi, A*(He et al. 2017) and GBI with noisy and noise-free constraints.
Note that the (+/-) F1 are reported w.r.t Viterbi decoding on the same column.

E Analyzing the runtime of different inference procedures with varying dataset sizes and genres

Network Genre(s) No. of examples Failure Inference time (approx. mins)
rate (%) Viterbi GBI A*

SRL-100 All 25.6k 9.82 109 288 377

SRL-NW

BC 4.9k 26.86 23 110 117
BN 3.9K 18.51 18 64 100
PT 2.8k 10.01 8 19 15
TC 2.2k 19.01 5 23 20
WB 2.3k 20.32 12 49 69

Table 11: Comparison of runtime for difference inference procedures in noise-free constraint setting: Viterbi, A*(He et al. 2017)
and GBI. For SRL-100 refer Table 1 and SRL-NW is a model trained on NW genre.

Table 11 reports the runtime for different inference procedures with varying dataset sizes. In general, we observe that GBI
tends to be faster than A*, especially when the dataset is large enough. One exception is the BC domain where GBI is just slightly
faster than A*. We hypothesize it might be due to the difficulty of the constraint violation due to its failure rate being higher than
usual. GBI will search for the correct output for longer time (more iterations) if it is harder to find the solution.

Also note that we explicitly set max epochs for GBI after which it will stop iterating to avoid pathological cases. In our SRL
experiments, we have set the max epochs to be 10 (GBI-10). To study its scalability, we ran GBI with max epochs set to 30
(GBI-30). In terms of the runtime, we do see a difference with GBI-30 taking 556 mins as opposed to GBI-10 taking 288 mins.
However, we also get significantly better results with GBI-30 in terms overall F1 (+0.34), F1 on failure set (+3.4), exact match
(+4.35%), and conversion rate (+11.24%) compared with GBI-10 at the cost of runtime increment.


